
SE 3310b

Theoretical Foundations of Software Engineering

Universal TuringMachines, the Halting Problem
and the Existence of Undecidable Languages

Aleksander Essex

1 / 32

Turing Completeness and
Universal Computation

2 / 32

Implications of the
Church-Turing Thesis

Recall theChurch-Turing thesis essentially states that if a problem
P can be solved solved using an algorithmA it can be solved by
some Turing machineM:

AlgorithmA solvesP Ñ TuringMachineM solves problemP

3 / 32

Implications of the
Church-Turing Thesis

Consider a computational system S. If I could somehow prove it
can simulate any Turing machine, i.e., if I could somehow prove:

TuringMachineM Ñ Some instance of system S,

then by the Church-Turing thesis I can prove:

AlgorithmA Ñ Some instance of system S.

The implication is that the computational system S can be used to
solve any problem that is algorithmically solvable.

4 / 32

Turing Completeness

A computational system S is called Turing complete if it can be
used to simulate any Turing machineM

Definition 1 (Turing Completeness).

That is, S is Turing complete if it can be used to simulate the
functionality of any Turing machineM. This notion of simulation
will become important when we talk about Universal Turing
machines. But for now, its also useful to talk about real-world
programming languages

5 / 32

Turing Complete
Programming Languages
Turing completeness is useful in the context of real-world
computational systems (e.g., programming languages). For
example, if you designed a new programming language and could
prove it was Turing complete, you will have proved (via the C-T
thesis) that your programming language can compute anything
that any other Turing complete language can.

What do you need for a language to be Turing complete? Actually
not that much. For an imperative language (e.g., C) you need:

1. The ability to read/write frommemory

2. If statements

3. Goto statements

6 / 32

Example: Turing
Completeness of C

Consider the following
description of a Turing
machine (a 2-state Busy
Beaver):

Current Read Write Move Next
A 0 1 R B
A 1 1 L B
B 0 1 L A
B 1 1 N H

We can encode each state
transition directly into C
(see right):

/ / 2́ S t a t e Busy Beave r T u r i n g machine i n C
#inc lude < s t d i o . h>
i n t main () {

i n t tape [10] = { 0 } ; / / i n i t t ape to a l l 0s
i n t * head = &tape [5] ; / / i n i t head i n m idd l e

stateA :
i f (! * head) { / / i f r ead 0
* head = 1 ; / / w r i t e 1
head++; / / move head r i g h t
goto stateB ;

}
e lse { / / i f r ead 1

* head = 1 ; / / w r i t e 1
head´ ;́ / / move head l e f t
goto stateB ;

}

s tateB :
i f (! * head) { / / i f r ead 0
* head = 1 ; / / w r i t e 1
head´ ;́ / / move head r i g h t
goto stateA ;

}
e lse { / / i f r ead 1

* head = 1 ; / / w r i t e 1
goto h a l t ;

}

h a l t :
return 1 ;

} ;

7 / 32

http://en.wikipedia.org/wiki/Busy_beaver
http://en.wikipedia.org/wiki/Busy_beaver

Universal Computation

A computational system that is Turing complete is capable of
universal computation, and is (in most cases) what wemean today by
the term ”computer.”

This is an important distinction because there are computational
systems (e.g., a clock, a calculator, etc) that are capable of some
form of computation, but are not Turing complete. Something to
consider next time you see a commercial where they’re claiming
your toothbrush as an on-board computer.

8 / 32

Undecidability and the
Halting Problem

9 / 32

Consider the Dilemma

For each of the following statements mark True if the statement is true,
and mark false if the statement is false:

1. The sky is blue: T / F

2. 1+1=3: T / F

3. You’ll mark this question False: T / F

If youmark False then the statement was True, which means you
should mark True. But if youmark True, then the statement was
False, which means you should mark False. But if youmark false…

10 / 32

Universal TMs and
Simulation
AUniversal TuringMachine (UTM) is a TM that can simulate the
behavior of any Turing machine on any input.

Let M be a Turing machine. We use the notation xMy to de-
note the description ofM encoded as a string.

Definition 2 (String encoding notation).

Additionally we use notation xM,wy to denote a string describing a
Turing machineM, and inputw. We can provide xM,wy as input to
U, and designU to simulate the execution ofM on inputw.

11 / 32

Some Aspects ofU

§ U is a computer,M is a program,w is the input argument.

§ The the description ofU is independent ofM, and descriptions
ofU in as few as |Q| = 2 states and |Γ| = 6 tape symbols are
known.

§ The precise details ofU aren’t considered here. AllU needs to
keep track of is what stateM is currently, and whatM’s head is
currently pointing at. Then at each step it can scan through
the description ofM to decide what to do next.

12 / 32

WhatUDoes

Uworks as follows: Given input xM,wywhereM is a TM andw is a
string:

§ SimulateM on inputw
§ IfM accepts, halt and output accept.

§ IfM rejects, halt and output reject.

Notice that:

§ IfM acceptsw, thenU accepts xM,wy

§ IfM rejectsw, thenU rejects xM,wy

§ IfM loops onw, thenU loops on xM,wy.

13 / 32

The Language of U

U is a Turingmachine, and every Turingmachine has a set of strings
that it accepts. In other words, recognizes some language. So what
language doesU recognize? It recognizes xM,wy, the set of
accepting Turing machine/string combinations:

ATM = txM,wy : TMM accepts string wu

ATM is known as the acceptance problem. Clearly,U recognizes
ATM. Notice, however,U does not decideATM: ifM loops onw,
thenU loops on xM,wy.

14 / 32

ATM is Undecidable

Well maybe there is some TMH that could checkM and somehow
decide if it would go into a loop on inputw, and then could reject.

Theorem: ATM is undecidable.

Proof: to follow.

15 / 32

ADecider forATM

Let’s begin by assuming the existence of a programH that decides
ATM.

Hworks as follows:

§ Given input xM,wywhereM is a TM andw is a string:

§ IfM acceptsw, halt and output accept.
§ Otherwise halt and output reject.

Notice we defineH as a decider. It always answers “Yes” or “No” to
the questions of whether machineM accepts inputw.

16 / 32

Define a TMEncoding

Define some Turing machine encoding scheme. All TMs now
correspond to some string, and we can sort them lexicographically
(e.g., alphabetically) to produce some kind of canonical ordering of
TMs. Nowwe can talk about the 1st TM, the 10th TM, etc.

17 / 32

A Table of all TMs and Their
String Encodings.

Define the following table: let row i correspond to the i-th Turing
machineMi. Let column j correspond to the string encoding ofMi,
i.e., xMiy.

18 / 32

RunH on the Table
For each rowMi and each column xMjy, runH on xMi,Mjy, and fill
in the results in cell (i, j), i.e.,Mi accepts string xMjy, fill in (i, j)with
Accept. Otherwise fill in Reject.

The diagonal of this table, i.e., all cells (k, k) for k ě 1 represent all
Turing machinesMk fed their own description xMky as input. Some
will accept, somewill reject, and somewill loop.

We can now define two sets: those TMs that will accept their own
encoding, and those that don’t.

Why are we doing this?? There’s no special significance to feeding a
TM its own description as input, except toward helping us achieve
our contradiction.

19 / 32

Running TM’s on Their Own
Description

Consider the language of all TMs that do not accept their own
encoding as input, i.e., let:

L = txMiy : Mi does not accept input xMiyu

This corresponds to all cells on the diagonal that are reject. Is there
a Turing machine that can decide this language? Suppose the n-th
Turing machine, i.e.,Mn can decide language L.
What is the languageMn accepts? It accepts all strings xMkywhere
Turing machineMk accepts input xMky.

20 / 32

Running TM’s on Their Own
Description

ThusMn can be described as follows:

Given input string xMiy:

1. RunH on input xMi, xMiyy

2. IfH outputs accept, halt and output reject. IfH outputs reject,
halt and output accept.

NoticeMn does two things: it runsMi own description xMiy, and
outputs the opposite of what H outputs.

21 / 32

Mn on its OwnDescription

Consider nowwhat happens whenMn is run on its own description
xMny?

Given input string xMny and our description ofMn we have:

1. RunH on input xMn, xMnyy

2. IfH outputs accept, halt and output reject.

3. IfH outputs reject, halt and output accept.

Recall,H accepts xMn, xMnyy ifMn would have accepted xMny as
input.

22 / 32

Mn Cannot Exist

Let’s consider both cases ofMn run on its own input xMny:

§ Case 1: Mn outputs accept. That means H output reject,
meaningMn did not accept itself as input. But this is the case
whereMn accepted itself as input. A contradiction!

§ Case 2: Mn outputs reject. That means H output accept,
meaningMn accepted itself as input. But this is the case
whereMn did accepted itself as input. Another contradiction!

Conclusion: Mn cannot exist.

23 / 32

ATM is Undecidable

Byway of a logical paradox we seeMn cannot exist. ButMn merely
does the opposite of what H does. Therefore by extension H cannot
exist. And sinceH decidesATM, thereforeATM is undecidable.

24 / 32

TheHalting Problem

Nowwe’re ready to consider the famousHalting problem:

HALT = txM,wy : Turing machineM halts on string wu

The languageHALT consists of all Turing machines that halt i.e.,
either acccept or reject a given input. Can you decide this
language? Can you always tell the difference between a TM stuck
in a loop, and one that’s just taking a really long time?

25 / 32

TheHalting Problem

It’s easy to see why being able to decide this language would be
useful: if you could decide ahead of time if a programwas going to
run forever, you wouldn’t have to wait around forever to find out!

HALT is undecidable.

Theorem 3.

Proof: Toward obtaining a contradiction, let’s begin by assuming
HALT is decidable.

26 / 32

TheHalting Problem

Let S be a Turing machine that decidesHALT. To obtain the
contradiction, wewill show that if S decidesHALT, we can use it to
build a Turing machineT to decideATM. T works as follows:

Given input xM,wywhereM is a TM andw is a string:
§ Run S on xM,wy

§ If S rejects (i.e.,M does not halt onw), output reject
§ Else simulateM on inputw (since S told us it will halt
eventually).

§ IfM accepts, halt and output accept
§ IfM rejects, halt and output reject

27 / 32

TheHalting Problem

ClearlyT decidesATM: IfM accepts,T accepts. IfM rejects,T
rejects. IfM gets stuck in a loop (as decided by S), thenT rejects.

Problem: IfHALT is decidable then clearlyATM is decidable. But
we already provedATM was undecidable. This contradicts our
initial assumption thatHALT is decidable.

ThereforeHALT is not decidable.

28 / 32

TheHalting Problem

Why does the halting problemmatter? For a few reasons.

1. It proves the existence of undecidable (i.e., uncomputable)
problems, establishing a fundamental limit to what can be
computed

2. In his seminal paper OnComputable Numbers, Turing
reduced the Halting Problem to the Entschiedungsproblems,
meaning if you could solve the latter, you could solve the
former. But since we proved you cannot solve the former, you
cannot solve the latter.

3. As a sort of byproduct of all of this, he invented the notion of
the stored program computer!

29 / 32

http://plms.oxfordjournals.org/content/s2-42/1/230.full.pdf+html

A Turing Unrecognizable
Problem
Consider the complement ofATM:

ATM = txM,wy : TMM does not accept string wu

We already showedATM was Turing-recognizable: simulateM on
w using our universal machineU and output accept ifM outputs
accept. But what aboutATM?

ATM is Turing-unrecognizable.

Theorem 4.

30 / 32

A Turing Unrecognizable
Problem
Once again, towards a contradiction let’s begin by assumingATM is
Turing-recognizable. LetU be a TM recognizingATM andV be a
TM recognizingATM. We now show that we can useU andV to
build a TMW to decideATM.

W works as follows: Given input xM,wywhereM is a TM andw is
a string:

1. RunU andV in parallel onw
2. IfU accepts, halt and output accept

3. IfV accepts, halt and output reject

31 / 32

A Turing Unrecognizable
Problem

Let’s consider what we’ve accomplished withW:

§ W is a decider. It accepts whenU accepts, it rejects whenV
accepts.

§ W decidesATM. It accepts when xM,wy P ATM and rejects
whenă M,w ą P ATM

But once again,ATM is undecidable. Therefore we have reached a
contradiction somewhere. But where? Well we knowATM is
recognizable, thus our assumption thatATM is recognizable must
be false.

32 / 32

