SE 3310b

Theoretical Foundations of Software Engineering

Universal Turing Machines, the Halting Problem
and the Existence of Undecidable Languages

Aleksander Essex

% Western
Engineering

Turing Completeness and
Universal Computation

Implications of the
Church-Turing Thesis

Recall the Church-Turing thesis essentially states that if a problem
P can be solved solved using an algorithm A it can be solved by

some Turing machine M:

Algorithm A solves P — Turing Machine M solves problem P

(XN

Implications of the
Church-Turing Thesis

Consider a computational system S. If | could somehow prove it
can simulate any Turing machine, i.e., if | could somehow prove:

Turing Machine M — Some instance of system S,
then by the Church-Turing thesis | can prove:
Algorithm A — Some instance of system S.
The implication is that the computational system S'can be used to

solve any problem that is algorithmically solvable.
54
O

Turing Completeness

Definition 1 (Turing Completeness).

A computational system S'is called Turing complete if it can be
used to simulate any Turing machine M

That s, Sis Turing complete if it can be used to simulate the
functionality of any Turing machine M. This notion of simulation
will become important when we talk about Universal Turing
machines. But for now, its also useful to talk about real-world
programming languages

5

Turing Complete
Programming Languages

Turing completeness is useful in the context of real-world
computational systems (e.g., programming languages). For
example, if you designed a new programming language and could
prove it was Turing complete, you will have proved (via the C-T
thesis) that your programming language can compute anything
that any other Turing complete language can.

What do you need for a language to be Turing complete? Actually
not that much. For an imperative language (e.g., C) you need:

1. The ability to read/write from memory
2. If statements
3. Goto statements

(XN

Example: Turing
Completeness of C

Consider the following
description of a Turing
machine (a 2-state Busy
Beaver):

Current Read Write Move Next
A 0 1 R B
A 1 1 L B
B 0 1 L A
B 1 1 N H

We can encode each state
transition directly into C
(seeright):

// 2—State Busy Beaver Turing machine in C
#include <stdio.h>
int main(){

int tape[10] = {0Q}; //init tape to all Os
int *head = &tapel[5]; //init head in middle

stateA:
if (!*head){ //if read O
*head = 1; //write 1
head++; //move head right
goto stateB;

}

else{ //if read 1
*head = 1; //write 1
head ——; //move head left

goto stateB;
}

stateB:
if (!*head){ //if read O
*head = 1; //write 1
head——; //move head right
goto stateA;
}

else{ //if read 1
*head = 1; //write 1
goto halt;

}

halt:

return 1;

(XN

http://en.wikipedia.org/wiki/Busy_beaver
http://en.wikipedia.org/wiki/Busy_beaver

Universal Computation

A computational system that is Turing complete is capable of
universal computation, and is (in most cases) what we mean today by
the term "computer”

This is an important distinction because there are computational
systems (e.g., a clock, a calculator, etc) that are capable of some
form of computation, but are not Turing complete. Something to
consider next time you see a commercial where they're claiming
your toothbrush as an on-board computer.

(XN

Undecidability and the
Halting Problem

Consider the Dilemma

For each of the following statements mark True if the statement is true,
and mark false if the statement is false:

1. Theskyisblue: T/F
2. 1+1=3:T/F
3. You'll mark this question False: T/ F

If you mark False then the statement was True, which means you
should mark True. But if you mark True, then the statement was
False, which means you should mark False. But if you mark false...

2

Universal TMs and
Simulation

A Universal Turing Machine (UTM) is a TM that can simulate the
behavior of any Turing machine on any input.

Definition 2 (String encoding notation).

Let M be a Turing machine. We use the notation (M) to de-
note the description of Mencoded as a string.

Additionally we use notation (M, w) to denote a string describing a

Turing machine M, and input w. We can provide (M, wy as input to

U, and design Uto simulate the execution of Moninput w. §

Some Aspects of U

» Ulisacomputer, Mis a program, wis the input argument.

» Thethe description of Uis independent of M, and descriptions
of Uinas few as | Q| = 2 states and |I'| = 6 tape symbols are
known.

» The precise details of Uaren't considered here. All Uneeds to
keep track of is what state Mis currently, and what M's head is
currently pointing at. Then at each step it can scan through
the description of M to decide what to do next.

(XN

What U Does

Uworks as follows: Given input (M, wy where MisaTM and wis a
string:

» Simulate Mon input w

» |f M accepts, halt and output accept.

» If Mrejects, halt and output reject.
Notice that:

» If Maccepts w, then Uaccepts (M, w)
» If Mrejects w, then Urejects (M, w)y
» If Mloops on w, then Uloops on (M, w).

(XN

The Language of U

Uis a Turing machine, and every Turing machine has a set of strings
that it accepts. In other words, recognizes some language. So what
language does Urecognize? It recognizes (M, wy, the set of
accepting Turing machine/string combinations:

Ary = {{M, wy : TMM accepts string w}

Ayis known as the acceptance problem. Clearly, Urecognizes
A Notice, however, Udoes not decide A7y if Mloops on w,
then Uloops on (M, w).

(XN

A7yris Undecidable

Well maybe there is some TM H that could check M and somehow
decide if it would go into a loop on input w, and then could reject.

Theorem: A,y is undecidable.

Proof: to follow.

(XN

A Decider for Ay

Let’s begin by assuming the existence of a program H that decides
A1y
Hworks as follows:

» Given input (M, wy where Misa TM and wis a string:

» |f M accepts w, halt and output accept.

» Otherwise halt and output reject.

Notice we define H as a decider. It always answers “Yes” or “No” to
the questions of whether machine M accepts input w.

(XN

Define a TM Encoding

Define some Turing machine encoding scheme. All TMs now
correspond to some string, and we can sort them lexicographically
(e.g., alphabetically) to produce some kind of canonical ordering of
TMs. Now we can talk about the 1st TM, the 10th TM, etc.

(XN

A Table of all TMs and Their
String Encodings.

Define the following table: let row i correspond to the é-th Turing
machine M;. Let column jcorrespond to the string encoding of M;,
i.e., <Mz>

(XN

Run Honthe Table

For each row M; and each column (M;, run Hon {M;, M;), and fill
in the results in cell (¢, j), i.e., M; accepts string (M), fill in (4, j) with
Accept. Otherwise fillinReject.

The diagonal of this table, i.e., all cells (k, k) for k > 1 represent all
Turing machines My fed their own description (M) as input. Some
will accept, some will reject, and some will loop.

We can now define two sets: those TMs that will accept their own
encoding, and those that don't.

Why are we doing this?? There's no special significance to feeding a
TM its own description as input, except toward helping us achieve
our contradiction.

Running TM’s on Their Own
Description

Consider the language of all TMs that do not accept their own
encoding as input, i.e., let:

L = {{M;) : M; does not accept input (M;»}

This corresponds to all cells on the diagonal that are reject. Is there
a Turing machine that can decide this language? Suppose the n-th
Turing machine, i.e., M,, can decide language L.

What is the language M,, accepts? It accepts all strings (M) where
Turing machine My, accepts input {Mp).

2

Running TM’s on Their Own
Description

Thus M, can be described as follows:

Given input string (M;):
1. Run Hon input (M;,{M;>)

2. If Houtputs accept, halt and output reject. If Houtputs reject,
halt and output accept.

Notice M,, does two things: it runs M; own description (M;), and
outputs the opposite of what H outputs.

(XN

M,, on its Own Description

Consider now what happens when M, is run on its own description
(Mr)?
Given input string (M,,» and our description of M,, we have:

1. Run Hon input (M, {My))

2. If Houtputs accept, halt and output reject.

3. If Houtputs reject, halt and output accept.

Recall, Haccepts { My,{ M,y if M,, would have accepted (M,,» as
input.

(XN

M,, Cannot Exist

Let's consider both cases of M, run on its own input (M,):

» Case 1: M, outputs accept. That means H output reject,
meaning M, did not accept itself as input. But this is the case
where M,, accepted itself as input. A contradiction!

» Case 2: M, outputs reject. That means H output accept,
meaning M, accepted itself as input. But this is the case
where M, did accepted itself as input. Another contradiction!

Conclusion: M, cannot exist.

(XN

A7yris Undecidable

By way of a logical paradox we see M,, cannot exist. But M,, merely
does the opposite of what H does. Therefore by extension H cannot
exist. And since Hdecides A1y, therefore A yyis undecidable. [

(XN

The Halting Problem

Now we're ready to consider the famous Halting problem:
HALT = {{M, wy : Turing machine M halts on string w}

The language HAL T consists of all Turing machines that halti.e,
either acccept or reject a given input. Can you decide this
language? Can you always tell the difference between a TM stuck
in aloop, and one that’s just taking a really long time?

(XN

The Halting Problem

It's easy to see why being able to decide this language would be
useful: if you could decide ahead of time if a program was going to
run forever, you wouldn’t have to wait around forever to find out!

Theorem 3.

HALTisundecidable.

Proof: Toward obtaining a contradiction, let’s begin by assuming
HALTiIs decidable.

2

The Halting Problem

Let S'be a Turing machine that decides HALT. To obtain the
contradiction, we will show that if Sdecides HALT, we can use it to
build a Turing machine T'to decide A7y T works as follows:

Given input (M, wy where Misa TM and wis a string:
» Run Son (M, wy
» If Srejects (i.e., M does not halt on w), output reject

» Else simulate M on input w (since Stold us it will halt
eventually).

» |f M accepts, halt and output accept
> |f Mrejects, halt and output reject

(XN

The Halting Problem

Clearly T'decides Ay If Maccepts, T'accepts. If Mrejects, T
rejects. If M gets stuck in aloop (as decided by S), then T'rejects.

Problem: If HALT'is decidable then clearly A s is decidable. But
we already proved A 7y was undecidable. This contradicts our
initial assumption that HALT'is decidable.

Therefore HALT'is not decidable.]

(XN

The Halting Problem

Why does the halting problem matter? For a few reasons.

1. It proves the existence of undecidable (i.e., uncomputable)
problems, establishing a fundamental limit to what can be
computed

2. In his seminal paper On Computable Numbers, Turing
reduced the Halting Problem to the Entschiedungsproblems,
meaning if you could solve the latter, you could solve the
former. But since we proved you cannot solve the former, you
cannot solve the latter.

3. Asasort of byproduct of all of this, he invented the notion of
the stored program computer!

2

http://plms.oxfordjournals.org/content/s2-42/1/230.full.pdf+html

A Turing Unrecognizable
Problem

Consider the complement of A7

Aqy = {{M, wy : TMM does not accept string w}

We already showed A 7y was Turing-recognizable: simulate M on
wusing our universal machine Uand output accept if M outputs
accept. But what about A 747

Theorem 4.

Arpris Turing-unrecognizable.

(X}

A Turing Unrecognizable
Problem

Once again, towards a contradiction let’s begin by assuming A razis
Turing-recognizable. Let Ube a TM recognizing Arysand Vbe a
TM recognizing A a7 We now show that we can use Uand Vto
builda TM Wto decide Ay

W works as follows: Given input (M, wy where Misa TM and wis
astring:

1. Run Uand Vin parallel on w

2. If Uaccepts, halt and output accept

3. If Vaccepts, halt and output reject

(XN

A Turing Unrecognizable
Problem

Let's consider what we've accomplished with W:
» Wis adecider. It accepts when Uaccepts, it rejects when V
accepts.
» Wdecides Ay It accepts when (M, wy € Ay and rejects
when< M, w>¢€ Apy
But once again, Ay is undecidable. Therefore we have reached a
contradiction somewhere. But where? Well we know A 7 is
recognizable, thus our assumption that A 7, is recognizable must
be false. O

2

