
SE 3310b

Theoretical Foundations of Software Engineering

Decidability and the Church-Turing Thesis

Aleksander Essex

1 / 12



Church-Turing Thesis

2 / 12



EffectiveMethod

To solve the Entscheidungsproblem (Decision Problem), Turing
offered an intuitive notion of what he called an ”effective method”
for computing:

1. Takes a finite number of steps

2. Always produces a result

3. Always produces a correct answer

4. Could in principle be done by a human (with enough time,
pencils and paper)

5. Only need to follow instructions, no ingenuity or creativity
required

3 / 12



Definition of an Algorithm

An ”effective method” is an intuitive definition of an algorithm.
Additionally,

§ A function is ”effectively calculable” if there is an effective
method (i.e., algorithm) to do so.

§ A function is ”computable function” is there is a Turing
Machine that can compute it.

4 / 12



Church-Turing Thesis

The Church-Turing thesis is the result of Alonzo Church and Alan
Turing’s efforts to capture the notion of computation and its
real-world limits.

Every effectively calculable function is a computable function.

Definition 1 (Church-Turing Thesis).

In other words, a problem can be solved by an algorithm if and only
if it can be solved by a Turing machine.

5 / 12



Summary
In summary the Church-Turing thesis is basically saying that Turing
machines (or equivalently Church’s Lambda Calculus) can
implement any algorithm.

This, however is a thesis, not a theorem. It can be disproved by a
counter example. Arguments for include:

§ Huge set of known Turing computable functions, no known
counter examples

§ Equivalence with other models (e.g., Lamba calculus, cellular
automata etc)

So when we say a Turing machine can ”compute” a function, what
do wemean exactly?

6 / 12



Decidable vs. Recognizable

7 / 12



Classifying languages

When a Turing machine is run given a particular string, three
outcomes are possible:

1. Accept and halt

2. Reject and halt

3. Loop forever (i.e., never halts)

Telling the difference between amachine that halts (but is just
taking a long time) from one that never halts seems like a useful
distinction. Therefore we define two classes of languages: one for
which the Turing machine always halts (i.e., always accepts or
rejects) from ones that may loop on certain inputs.

8 / 12



Recognizing vs. Deciding
Let L be a language andM be a Turing machine.

§ Recognizable Language: We sayM recognizes L ifM halts and
accepts all strings s P L. Note we don’t place any condition on
what the Turing machine should do if it encounteres a string
s R L.

§ Decidable Language: We sayM decides L ifM ifM halts and
accepts all strings in s P L, and halts and rejects all strings
s R L.

Thus a Turing machine that decides a language always halts,
whereas a Turing machine that recognizes a languagemust only
halt for strings in the langauge. Thus it follows that all decidable
languages are recognizable languages.

9 / 12



Recognizable Languages

A language is called Turing recognizable if some Turing ma-
chine recognizes it.

Definition 2 (Turing Recognizable).

The class of Turing recognizable langauges is sometimes called the
recursively enumerable languages.

10 / 12



Decidable Languages

A Turing machineM that always halts given any input is called a
decider. Because it always halts, we say it decideswhether a string is
in the language or not.

A language is called Turing decidable (i.e, decidable) if some
Turing machine decides it.

Definition 3 (Turing Decidable).

The class of Turing-decidable languages is sometimes called the
recursive languages.

11 / 12



Language Hierarcy

Regular (DFAs, NFAs, REs)

Context-free (CFGs, PDAs)

Recursive (Turing-decidable)

Recursively-enumerable
(Turing-recognizable)

All Languages

Note: Context-sensitive langauges not shown.

12 / 12


