
SE 3310b

Theoretical Foundations of
Software Engineering

Week 4:
Closure Properties of Regular Languages. Regular

Expressions. Pumping Lemma for Regular Languages.

Aleksander Essex

1 / 40

Closure Properties of Regular
Languages

2 / 40

Closure

Let S be a set and let f be an operation defined for all elements of
that set. Closure refers to the situation in f always produces an
output that is an element of S, when given elements of S as input.

So for example if S = Z, we say S is closed under addition, since if
you only ever add integers, you only will receive an integer as
output. On the other hand S is not closed under divition: dividing
two integers can produce a result that is not, itself, an integer.

3 / 40

Closure

Let REG be the set of regular language. Let f(¨) be an op-
eration that accepts one (or more) langauges and produces
a language. We say the set of regular languages REG is
closed under f(¨) if, for all L1 . . .Ln P REG , it is the case that
f(L1 . . .Ln) P REG.

Definition 1 (Regular Language Closure).

In other words, if f(¨) always outputs a regular language given only regular
languages as input, we say f is closed under the regular languages. So if the
regular languages are closed under e.g., complement, then if L̄ is the complement

of a regular languageL, then L̄ is a regular language.

4 / 40

Regular Language Closures

Regular languages are closed under a wide variety of operations:

§ Complement: L1 = ts : s R Lu

§ Reversal: L1 = ts : reverse(s) P Lu

§ Union: L1 = ts : s P L1 or s P L2u

§ Intersection: L1 = ts : s P L1 and s P L2u

§ Concatenation: L1 = tst : s P L1, t P L2u

§ Kleene star: L1 = ts˚ : s P Lu

§ andmanymore...

5 / 40

Proofs of Closures

Let’s prove a few of themore common closures: union,
concatenation and Kleene star. The idea is to take twoNFAs (or
DFAs), and then apply the operation to get a third automaton.
There are two things to check we have to do to the result:

1. does the resulting automaton produce the intended language

2. is the automaton an NFA (or DFA)?

6 / 40

Proofs of Closures
Let’s start by considering the following two languages.

startL1

startL2

7 / 40

Union of Languages

Let L3 = L1 Y L2, i.e., string s is in language L3 if it’s in L1 or L2.
Given the NFAs for L1 and L2 we can construct L3 in two steps:

1. Define a new ”joint” start state

2. Add ϵ-transitions from the new joint start state into the states
of L1 and L2 respectively

3. Convert the start states of L1 and L2 to non-starting states.

8 / 40

Union of Languages
The result of L3 = L1 Y L2:

startL3

ϵ

ϵ

9 / 40

Union of Languages

Sanity check:

1. Does L3 recognize the union of L1 or L2?

2. Is the machine that recognizes L3 a valid NFA/DFA?

Finally, is our concatenation algorithm a ”black box” solution to any
arbitrary pair of languages? That is, does it always work for any
regular language? If yes to all three questions, then we can say the
regular languages are closed under concatenation.

10 / 40

Concatenation of Languages

Let L4 = L2L1, i.e., L4 the set of strings that are the concatenation
of a string in L2 with a string in L1. Strategy:

1. Convert all accept states in the first language (L2 in this case)
in to regular states

2. Extend an ϵ-transition from all former accept states inL2 to
the start state of the second language (L1 in this case).
Convert the start state of the second language to a regular
state.

11 / 40

Concatenation of Languages

The result of L4 = L2L1:

startL4

ϵ

ϵ

12 / 40

Kleene Star

Let L5 = L˚
2 , i.e., for all s P L2, we have s˚ P L4. Strategy:

1. Define a new start state (that also accepts) to handle the
0-length string and have this new state ϵ-transition in to the
(former) start state of L2

2. To handle non 0-length repetitions, make all the accept states
of L2 ϵ-transition back to the former start state ofL2.

13 / 40

Kleene Star of Languages

The result of L5 = L˚
2 :

startL5
ϵ

ϵ

ϵ

14 / 40

Regular Expressions

15 / 40

Regular Expression

R is a regular expression if R is:

1. a P Σ (a symbol)

2. ε (the empty string)

3. ϕ (the empty set)

4. R1 Y R2 (the union of two REs)

5. R1R2 (the concatenation of two REs)

6. R˚
1 (an RE repeated 0 or more times)

Definition 2 (Regular Expression).

16 / 40

Regular Expression

Here are examples of languages as defined by a regular expression:

§ 0˚10˚: the set of strings that contain one 1.
§ 1˚(01+)˚: the strings where every zero is followed by one or
more 1.

§ (ΣΣ)˚

Weuse the notationR+ to denoteRR˚, i.e., the expressionR
repeated one or more times. Following with Sipser, we use the
(somewhat lax) notationΣ to denote any single symbol s P Σ.

17 / 40

Regular Expression

A language is regular if and only if some regular expression
describes it.

Theorem 3.

Proof. See textbook.

18 / 40

Pumping Lemma for Regular
Languages

19 / 40

Non-regular Languages

So far we have examined regular languages, i.e., the set of
languages that can be described by someDFA, NFA or RE.
Certainly it would seem tomake sense that there are languages for
which noDFA/NFA or RE exists to describe them. We call a
language of this kind non-regular.

Suppose suppose someone gave you the description of a and
language asked, ”is it regular, or not?” Howwould you decide? How
could you convince someone else?

20 / 40

Non-regular Languages

Consider the language L = t0n1n : n ě 0u, i.e., the set of all strings
beginning with a run of 0’s followed by the same number of 1’s.

Could you provide a DFA, NFA or RE to recognizes L? It would
seem, no: in order to be able to tell if the number of 0’s matched
the number of 1’s, you would seem to have to be able to somehow
remember howmany 0’s you had seen.

But in order to keep track of an unlimited number of possibilities,
you would need an unlimited number of states. But DFAs and
NFAs are restricted to finitely many states!

21 / 40

Proving a Regular Language
is Regular

Ok, let’s set aside proving a non-regular language is non-regular
for a moment. How dowe prove a regular language is regular?
That’s straightforward enough: give a DFA, NFA or RE that
recognizes the language.

22 / 40

Proving a Non-regular
Language is Non-regular

How can we prove a given language is non-regular? Maybe the
language actually is regular, we just haven’t been able to come up
with an equivalent DFA, NFA or RE yet. But if the language is
non-regular, wemight spend forever trying to come up with a DFA
that doesn’t exist. We need a better way.

Pumping Lemma: The Pumping lemma is a way to prove a
non-regular language is, in fact, non-regular. It makes use of a
special property of all regular languages, and if you can prove a
language does not have this property, then it is not regular.

23 / 40

The Pumping Lemma

If L is a reg. language, then for all string s P L where |s| ě p
(a number called the pumping length), then s can be divided
in to three parts s = xyz where:

1. xyiz P L for i ě 0

2. |y| ą 0 (i.e., |y| must be non-zero length)

3. |xy| ď p (i.e., |xy| must be no greater than the pumping
length)

Theorem 4 (Pumping Lemma).

24 / 40

Pumping Lemma: The Idea

The pumping lemma arises from the pigeonhole principle: if n + 1
pigeons occupy n holes, then at least one hole contains more than
one pigeon.

Looping through an automaton. Any string s P L defines a
computational path through the automaton. Suppose you can
express that automaton as a DFA (or NFA) with p states. If we feed
in a string of length p or greater, by the pigeonhole principle we
must visit at least one state more than once, implying the existence
of a ”loop,” or cycle. And if there’s a loop, then we could build a
string that repeats this loop as many times as wewant.

25 / 40

http://en.wikipedia.org/wiki/Pumping_lemma_for_regular_languages
http://en.wikipedia.org/wiki/Pigeonhole_principle

Pumping Lemma: The Idea

By pumpingwe’re talking about ”pumping” up a string, like inflating
a balloon:

§ Each string of a regular language (no smaller than the
pumping length) has a middle portion then can be pumped

§ By pumped, we me that this middle portion can be repeated
arbitrarily many times, and that the resultwill also be in the
language.

Ultimately we’re still talking about looping, so ”looping lemma” may
be a better name for it.

26 / 40

Visualizing the Pumping
Lemma
The pumping lemma says if the language is regular, then for any
string long enough, the computational path will have 3 parts:

sinitialstart smiddle saccept

x

y

z

The idea here is that there exists a segment of the computational
path, y (which starts is smiddle and returns to smiddle) that can be
repeated, or ”pumped” arbitrarily many times before finally
continuing on to the accept state.

27 / 40

Strategy for Proving L
Non-regular

If a regular languagemust have this middle, repeatable ”y” portion,
to show L is non-regular, it suffices to show that this y-portion is
not present in L. To do this we proceed with a proof by
contradiction:

1. Assume L is regular

2. Use pumping lemma to ”guarantee” that all strings s P L that
are ”long enough” (i.e., |s| ě p) can be pumped

3. Find some string s P Lwhere |s| ě p and show that it cannot
be pumped.

28 / 40

http://en.wikipedia.org/wiki/Proof_by_contradiction

Showing a String Cannot Be
Pumped
In order to show that a string s P L cannot be pumped, wemust
consider all possible ways that s can be divided into parts xyz, and
for each of then find some i ě 0 such that xyiz is string that is not in
the language to produce our contradiction.

Recall our string s, the one we use to find a contradiction. We don’t
actually pick a specific string s, but leave s abstract and focus on its
general structure/form:

§ Wedon’t assumewe knowwhat pumping length p is. We
simply define our s such that |s| ě p

§ Wedon’t examine all possible ways to partition string s into 3
parts, rather since s is of a general form, we look at all the
possible cases that s could be partitioned.

29 / 40

Pumping Lemma: An
Example

Recall our language L = t0n1n : n ě 0u. Prove L is non-regular.

Proof:

1. Assume L is regular

2. Let s be a string of the form 0p1p. Clearly s P L and |s| ě p
3. Let s = xyz. If L is regular (as we have assumed), then as per

the pumping lemma it is also the case that xyiz P L for i ě 0

4. Show s cannot be pumped. (see next slide)

30 / 40

Show s cannot be pumped

Nowwe examine howwe can prove s = 0p1p cannot be pumped.
To do this we consider all the possible (relevant) cases of
partitioning s in to xyz. Ok, let s = xyz, and by our definition s
contains an equal amount of 0’s and 1’s. Recall from our pumping
lemma definition we require |y| ą 0 and |xy| ď p

31 / 40

Show s cannot be pumped

Case 1: y contains all 0's: What happens if we pump y? Let
s1 = xyiz. If i ą 1, and since |y| ą 0, then s1 = xy . . . yz, i.e., the
process of pumping adds some non-zero amount of 0’s to s1. This
means that now s1 contains more 0’s than 11s, meaning s1 R L.
Similarly if we consider i = 0, we have s1 = xz. We have taken away
0’s, and thus s1 contains fewer

32 / 40

Show s cannot be pumped

Case 2: y contains all 1's: Similar to Case 1: if we have s1 = xyiz
and i ą 1 then we are adding 1’s to the string. If we have i = 0, we
are removing 1’s from the string. Either way, s1 will not have an
equal number of 0’s and 1’s, meaning s1 R L.

33 / 40

Show s cannot be pumped

Case 3: y contains both 0's and 1's: There are two sub-cases to
consider here:

§ Case 3a: y contains an unequal amount of 0's and 1's. The
argument here is similar again to the previous two cases:
pumping ywill either add (or remove) and unequal amount of
0’s and 1’s, giving us the same result, i.e., s1 R L

34 / 40

Show s cannot be pumped

Cont’d:

§ Case 3b: y contains an equal amount of 0's and 1's. This case
is different fromCases 1, 2, and 3a, since pumping y in this
case would add (or remove) and equal amount of 0’s and 1’s to
the language. For this case, suppose y = 0x1x for some x ą 0.
Let i ą 1. Then yi = yy . . . y

loomoon

i times

= 0x1x0x1x . . . 0x1x
looooooooomooooooooon

i times

.

So even though s1 contains the correct number of 0’s and 1’s,
they’re out of order! So once again we have s1 R L.

35 / 40

Pumping Lemma Example
(Cont’d)

Our goal was to prove L = t0n1n : n ě 0u is non-regular. To that
end, we started by assuming L is regular. Then we chose a string
s = 0p1p satisfying s P L and |s| ě p, and sought to show it cannot
be pumped.

From there we considered all possible ways to partition s = xyz
and, for each case, showed the existence of some i ě 0 for which
s = xyiz R L.

36 / 40

Pumping Lemma Example
(Cont’d)

What does that all mean? Well, ifLwas regular, then as per the
pumping lemma all strings inLmust have this ”pumpable” y portion.

Yet by showing that our sting s cannot not be pumped no matter
how we slice it, we have proved s does not have the requisite
property to be in L. Yet clearly s is in L.

This is a contradiction. ThereforeL is not regular.

37 / 40

Pumping Lemma FAQ

As you study the pumping lemma it is important for you to
understand exactly what it proves (or does not prove).

Q: I found a string in my language and showed that, for all
possible ways of partitioning the string into 3 parts, I could pump
it such that the resulting string was not in the language. What
have I proved?

A: By way of a contradiction, you have proved the language is
non-regular.

38 / 40

Pumping Lemma FAQCont’d

Q: I found a string in my language and showed it could be
pumped for some (or even all) ways of partitioning it. Does that
prove anything?

A: No, because it could mean one of 3 possibilities:

1. The language is regular, in which case all strings are pump-able,

2. The language is non-regular, and there exist strings in the language that
cannot be pumped, but you just haven’t found one yet, or,

3. All the strings in the language can be pumped, yet the language is
non-regular. Indeed such languages do exist, and you would require a
different proof technique, e.g., theMyhill–Nerode theorem. This theorem,
however, is outside the scope of this course.

39 / 40

http://en.wikipedia.org/wiki/Myhill%E2%80%93Nerode_theorem

Pumping Lemma Summary

In summary, the pumping lemma for regular languages is the fact
that:

All sufficiently long strings in a regular language contain a
substring that can be repeated arbitrarily many times, (and is)
usually used to prove (by way of contradiction) that certain
languages are not regular.

Finally, if the pumping lemma feels complicated to you (and it kind
of is), youmay enjoy reading this blog post: I hate the Pumping
Lemma.

40 / 40

http://en.wikipedia.org/wiki/Pumping_lemma_for_regular_languages
http://en.wikipedia.org/wiki/Proof_by_contradiction
https://bosker.wordpress.com/2013/08/18/i-hate-the-pumping-lemma/
https://bosker.wordpress.com/2013/08/18/i-hate-the-pumping-lemma/

