
SE 3310b

Theoretical Foundations of
Software Engineering

Week 3:
Equivalence of DFAs andNFAs. Closure Properties of

Regular Languages.

Aleksander Essex

Non-determinismContinued

Equivalence of NFAs and
DFAs
A natural question to ask is howDFAs andNFAs are related. On
first glance it seems like NFAs can domore, but is this really the
case? The first step to answering this question is to ask: Given a
DFA does there exist an equivalent NFA? By equivalent, wemean
that they accept the same language.

Every deterministic finite automaton has an equivalent non-
deterministic finite automaton.

Theorem 1 (All DFAs have an equivalent NFA).

Equivalence of NFAs and
DFAs

Proof. The proof is by definition: every DFA is also an NFA. It just
so happens that DFAs do not make use of the extra ”power” of
NFAs (i.e., multiple transitions and ϵ-transitions).

Equivalence of NFAs and
DFAs

Now comes the harder part: prove that every NFA has an
equivalent DFA (or not). If every NFA has an equivalent DFA, then
NFAs ultimately have nomore computational ”power” than DFAs.

Every non-deterministic finite automaton has an equivalent
deterministic finite automaton.

Theorem 2 (All NFAs have an equivalent DFA).

Equivalence of NFAs and
DFAs

Proof. To show every NFA has an equivalent DFA, it would be
sufficient to prove the existence of a general algorithm to covert
any NFA into an equivalent DFA.

Converting NFAs into DFAs

Webegin by reviewing each component of the definition of a DFA
to see what needs to be ”adjusted.”

1. States. The first thing to consider is the finite set of statesQ.
In an NFA, the computation can be in a combination of states
at the same time. In a DFA it can only be in one state at any
time. IDEA: let sets of states in an NFA each be a single state
in the corresponding DFA.

Converting NFAs into DFAs

1. States Cont'd. Example: suppose an NFA transitions to states
q0 and q1. In our corresponding DFAwe can define an
”amalgamated” or ”unified” state ”q0 and q1”. Howmany such
states do we need? If our NFA has |QN| = k states, our DFA
has |QD| = P(QN) = 2|QN|. Example: QN = tq0, q1, q2u then
QD = tϕ, tq0u, tq1u, tq2u, tq0, q1u, tq0, q2u, tq1, q2u, tq0, q1, q2uuwhere
ϕ is the ”dead” state (which wewill omit for notational clarity).

This is the complete set of states that our DFA could possibly
use. Of course as we fill in the transition table wemay find
some (or evenmost) states go unused.

Converting NFAs into DFAs

2. Alphabet. The alphabet stays the same: ΣN =ΣD

3. Starting state. Let q0 P QN be the starting state of our NFA.
The starting state of the corresponding DFA is tq0u Y δ(q0, ϵ),
i.e., combination of q0 and any other states reachable from q0
by an ϵ-transition.

4. Final states. LetFN be the set of final states of our NFA.
Recall the NFA accepts if any of the computational paths
accepts. Taking this over to a DFAmeans designating any of
the ”amalgamated” states as accept if they contain some
qi P FN. Example: ifFN = tq1u then
FD = ttq1u, tq1, q0u, tq1, q2u, tq0, q1, q2uu

Converting NFAs into DFAs

5. Transition Function. Filling in the transition function δD
proceeds in two parts. Part 1: wewrite a table with single
states for rows and letters for columns. We use the NFA’s
transition function δN to fill in this table converting sets of
states to ”amalgamated” states. But we still have to account
for ϵ-transitions. The way we do this is as follows: if we
transition from a state qi to a state qj, and qj contains an
ϵ-transition to state qk , then in effect qi transitions to
tqju Y tqku. This continues recursively until there are no new
ϵ-transitions to follow.

Converting NFAs into DFAs

5. Transition Function Cont'd. Part 2: Now that we have the
transitions for the single states written, we add new rows to
the table corresponding to the amalgamated states i.e.,
ttq0, q1u, tq0, q2uu, etc.). We fill in these cells by taking the union
of the cells of the corresponding single states. E.g. to fill in the
cell δD(tq0, q1u, a)we take δD(tq0u, a) Y δD(tq1u, a)

Example 1

Convert the following NFA to an equivalent DFA:

1start

2 3

b

ϵ
a

a

a,b

Example 1

1. States. QD will be end up being some subset of the powerset
ofQN, i.e.,QD Ă P(QN).

2. Alphabet. ΣD = ΣN = ta, bu

3. Start state. The NFA’s start state is 1, but there’s an
ϵ-transition to 3. The DFA’s start state, therefore, is the
amalgamated state t1, 3u.

4. Final states. FN = t1u, soFD is the set of all amalgamated
states that include 1, i.e.,FD = tt1u, t1, 2u, t1, 3u, t1, 2, 3uu

Example 1

5. Transition function. In part 1 of the conversion we start out
by writing out the transitions for single the single states taking
in to account the ϵ-transitions:

a b
t1u t2u

t2u t2, 3u t3u

t3u t1, 3u

Example 1

5. Transition function Cont'd. Nowwe fill in the rest of the
amalgamated states by taking the unions of the single states:

a b
t1u t2u

t2u t2, 3u t3u

t3u t1, 3u

t1, 2u t2, 3u t2, 3u

Ñ t1, 3u t1, 3u t2u

t2, 3u t1, 2, 3u t3u

t1, 2, 3u t1, 2, 3u t2, 3u

Example 1

Minimization. We’re using more states than we need. If you look
down the columns you’ll notice no current state/symbol
combination will lead to states t1u or t1, 2u. Since neither of those
states are a start state, we can never reach them, so we can
eliminate them.

Example 1
Finally, putting it all together, the resulting DFA looks like this:

t1, 3ustart t3u

t2u t2, 3u t1, 2, 3u

a

a

a

b
b

aa

b

a

b

Equivalence of DFAs and
NFAs

What does all this mean? Well recall we proved (by definition) that
all DFAs have an equivalent NFA. Then, we demonstrated an
algorithm showing all NFAs can be converted in to an equivalent
DFA.

Corollary: NFAs have nomore computational ”power” than DFAs.
In fact the set of languages recognized by DFAs andNFAs are
equivalent, i.e., the regular languages.

