
SE 3310b

Theoretical Foundations of
Software Engineering

Week 2:
DFAs Continued. Introduction to Non-determinism.

Aleksander Essex



DFAs Continued



Regular Language

LetA be a finite automaton and let L be the set of all strings that
are accepted byA, i.e.,L = ts : A accepts su. We call L the
language ofA. Similarly we sayA recognizes L.

A language L is called a regular language if there exists some
finite automatonA that recognizes it.

Definition 1 (Regular Language).



Strategies for CreatingDFAs

Suppose I give you an expression in set-builder notation, or simply
an English language description of a regular language and asked
you to give me the associated DFA. Howwould you do it?

1. Start by writing out all the possible states you think you will
need, and assign them some kind of semantic meaning

2. Assign a start state, and final state(s)

3. Add in transitions to define the behavior



DFA Example 1

Give a deterministic finite automaton that accepts all strings with
an odd number of 0’s and an odd number of 1’s:
1. Define states: what are all the possible scenarios (i.e., states)

wemight encounter as we read a string? Our string could
have:
1.1 Even 0’s, even 1’s
1.2 Even 0’s, odd 1’s
1.3 Odd 0’s, even 1’s
1.4 Odd 0’s, odd 1’s (our final state as per the question)

Let’s call these states: EE, EO, OE, OO respectively. EE is our
start state, since zero is even. OO is our accept state as per
the question.



DFA Example 1 Cont’d

2. Define a start state: If you haven’t seen any 0’s or 1’s yet,
which of our states would that correspond to?

3. Define final state(s): The question asks us to accept strings
with even number of 0’s and even number of 1’s. Which of our
states does that correspond to?

4. Fill in the arrows to define behavior: for each state, consider
the scenario where you receive a ’0’ as input, and a ’1’ as input
and then transition to the appropriate state.



DFA Example 1 Cont’d

EEstart EO

OE OO

1

0

1

0

1

0

1

0



DFA Example 2
Suppose wemodify the previous example to accept an even
number of 0’s and an even number of 1’s or an odd number of 0’s
and an odd number of 1’s, i.e.,EE andOO accept. We can reuse our
previous solution and just makeEE an accept state:

EEstart EO

OE OO

1

0

1

0

1

0

1

0



DFA Example 2 Cont’d

But is the best we can do? Are we nowmaybe using more states
than we strictly need to? What if we combine the EE/OO
(accepting) states, and combine the EO/OE (non-accepting) states?

EE/OOstart EO/OE

Exercise: Does there exist a set of transitions that will recognize
our language? If so, fill in the transitions.



DFA Example 3

Give a DFA that accepts all strings that, when interpreted as a
binary integer, are divisible by 4, i.e.,give the DFA for:

L = ts : s = t 00, t P t0, 1u˚u

Using our strategy from before:

1. Define states: what are all the possible scenarios (i.e., states)
wemight encounter as we read a string? At any given
moment, our string:
1.1 Ends in no 0’s
1.2 Ends in one 0
1.3 Ends in two 0’s



DFA Example 3 Cont’d

We also need to consider two special cases:

1. s = ε. The empty string should not be accepted.

2. s = t0u+. A string of one or more zeros should be accepted.

We can handle these cases by adding an additional (initial) state:

1. Initial state

2. Ends in no 0’s

3. Ends in one 0

4. Ends in two 0’s



DFA Example 3 Cont’d

2. Define a start state: Let’s begin in the “initial state”.

3. Define final state(s): From the question, our final state is the
”ends in two 0’s” state.

4. Fill in the arrows to define behavior: See diagram.



DFA Example 3 Cont’d

Initialstart No 0’s One 0 Two 0’s

0

1 0

1

0

1

0

1



DFA Example 4
How about the language of all strings that start with 2 zeros?

No 0’sstart One 0

Dead

Two 0’s

0

1

0

1

0,1

0,1



DFA Example 4 Cont’d

The dead state is a state that cannot ever lead to accepting state
regardless of any future input. For notational convenience, we will
omit dead states and any transitions leading to them:

No 0’sstart One 0 Two 0’s

0 0

0,1



DFA Example 5

Give a DFA that accepts all strings containing the string 11010.

Start out with a straight-line set of states and transitions:

start

1 1 0 1 0



DFA Example 5 Cont’d

Fill in the other arrows paying attention to themost recently seen
characters:

start

1 1 0 1 0

0

0

1

0
1

0,1



DFA Example 5 Cont’d

This is an example of string matching/searching, which is an
important application of finite automata. The strategy is to use
states to represent ”progress.”

The work comes in figuring out how far back you have to go on a
particular mismatch. The Knuth-Morris-Prat algorithm can
generate these kind of DFAs in an amount of time that grows
linearly in the number of states/alphabet.

http://en.wikipedia.org/wiki/Knuth%E2%80%93Morris%E2%80%93Pratt_algorithm


DFA Example 6

What if we asked to give a DFA that accepts all strings containing
the reverse of 11010. Could we take our 11010machine and run it
backwards? How could we do that?

1. We could make the starting state the accept state and vice
versa,

2. Reverse arrow direction

start

1 1 0 1 0

0

0

1

0 1

0,1



DFA Example 6 Cont’d

At first glance this change wouldn’t seem tomake sense: some
states havemore than one arrow coming out of themwith the
same symbol. For example, if you receive a 0 in the start state,
which state should you transition to?

Or could youmaybe somehow take both at the same time?



Non-Determinism



Determinism vs.
Non-Determinism

Given current state qi P Q and next input symbol x P Σ, the
transition function δ of a DFA defines exactly one state qj P Q to
move to. We call this determinism: the next state is determined by
the current state and next input symbol.

In graphical terms this means exactly one arrow comes out of
every state for each letter in the alphabet.



Determinism vs.
Non-Determinism

Non-determinism challenges the idea that there must be a single
path to a computation. What if many paths of the computation
could be followed at the same time? In that sense non-determinism
can be viewed as a kind of parallel computation in which many
”threads” can run concurrently. If at least one such thread accepts,
the computation accepts.



Non-deterministic Finite
Automaton

ANon-deterministic Finite Automaton (NFA) is like a DFA, except
that:

1. One ormore transitions are allowed for each symbol

2. Transitions can bemade without reading any symbol
(so-called ε-transitions)

3. Themachine accepts if any sequence of choices leads to an
accept state



Non-deterministic Finite
Automata (NFA)

A non-deterministic finite automaton is a 5´tuple
(Q,Σ, δ, q0,F)

1. Q : a finite set of states

2. Σ: a finite alphabet

3. δ : Q
Ś

Σε Ñ P(Q): a transition function

4. q0 P Q : the starting state

5. F Ď Q : a set of accepting states

Definition 2 (Non-deterministic Finite Automaton (NFA)).



Non-deterministic Finite
Automata (NFA)

Themain differences in NFAs relative to DFAs pertain to the
alphabet and the transition function δ.

§ Σε = Σ Y tεu

§ RecallP(Q) denotes the power set of Q.

In other words, the transition function takes a state and a symbol
(or the empty string ε) and and produces a set of possible next states.



NFA Example 1

Give an NFA that accepts string that end in 01:

q0start q1 q2
0

0,1

1

Formally,A = (tq0, q1, q2u, t0, 1u, δ, q0, tq2u)where δ =

0 1

q0 tq0, q1u tq0u

q1 H tq2u

q2 H H



NFA Example 1 Cont’d

Let’s look at theNFA’s computation paths, given input string 00101:

q0 q0 q0 q0 q0 q0

q1 q1 q1

q2 q2Dead

Dead

0 0 1 0 1

0 0 0

1 10

0

Since one thread accepts, the computation accepts.



NFA Example 2

Give an NFA that accepts all strings that contain string 11010:

q0start q1 q2 q3 q4 q5

0,1

1 1 0 1 0

0,1

Question: What is the role/purpose of the loop transitions in q0
and q5? Howwould the language themachine recognizes change if
you omitted either of them?



NFA Example 2 Cont’d

Recall the equivalent DFA:

q0start q1 q2 q3 q4 q5

1 1 0 1 0

0

0

1

0 1

0,1

Notice the NFAwasmuch easier to write (and read).



NFA StringMatching

In fact, given any string s = a1a2a3 . . . an and alphabetΣ, the NFA
that accepts all strings containing s is:

start . . .

ai P Σ

a1 a2 a3 an

ai P Σ



ϵ-Transitions

AnNFA canmake a transition without receiving any input. These
transitions, called ϵ-transitions can sometimes greatly simplify the
design.



ϵ-Transitions
Using ϵ-transitions, give an NFA that recognizes the set of string
that end in ”ING” or ”ER” forΣ = tA . . .Zu:

start

ϵ

ϵ

A-Z

A-Z

I N G

E R



Non-determinism: Two
Interpretations

There are two equivalent ways of thinking about non-determinism:

§ Parallel Computation: The computation proceeds along all
possible paths concurrently

§ Lucky Guess: The computation proceeds along one path only,
but always picks the path that leads to an accepting state (if
such a path exists)


