oYoX N

270 “\‘,—\
OO 1LUIL

D)

Theoretical Foundations of Software Engineering

>

NP-Complete and the Million Dollar Question:
Does P=NP?

Aleksander Essex

% Western
Engineering



P.<. NP



Pvs. NP

How do P and NP relate? First off we note that:

» Pisthe class of problems solvable by a DTM in polynomial
time. Informally it is the class of problems that can be solved
quickly,

» NP is the class of problems solvable by an NTM in polynomial
time. Informally it is the class of problems to which proposed
solutions can be checked quickly.

(XN



The Million Dollar Question

The first thing to notice is that P is a subset of NP: recall all DTMs
are ultimately a subset of NTMs. So whatever a DTM can solve in
polynomial time, an NTM can solve in polynomial time. Now there
are only two possibilities:

» P!=NP: There exist problems solvable by an NTM in
polynomial time for which there exists no DTM that can solve
them in polynomial time,

» P=NP: Every problem solvable by an NTM in polynomial time
has an equivalent DTM that can solve it in polynomial time.

2



Pvs. NP

So whichis it? As it turns out, this presently the greatest open
problem in computer science. In fact the Clay Mathematics
Institute is offering one million dollars for a solution.

Although we still don't know, but many people believe that P!=NP.

2


http://en.wikipedia.org/wiki/P_versus_NP_problem
http://en.wikipedia.org/wiki/P_versus_NP_problem
http://en.wikipedia.org/wiki/Millennium_Prize_Problems

FACTOR: An Example NP
Problem



FACTOR: An Example NP
Problem

By the fundamental theorem of arithmetic, every integer greater
than 1 can be expressed as a unique product of prime numbers.
Given such an integer, factoring is the process of recovering the
associated prime factors.

Init's basic form, factoring is not a decision problem, so let’s
restate it as one:

FACTOR(< n, b >):
If nhas afactor ffor1 < f < b, return True.
Else return False.

(XN


http://en.wikipedia.org/wiki/Fundamental_theorem_of_arithmetic

FACTOR

Theorem: FACTOR € NP.

Proof: FACTOR (as stated above) is a decision problem and if
FACTOR e NP then there exists a polytime verfifer for it. Let
VerFactor be defined as follows:

VerFactor(< n, b >, ¢)
If b divides nreturn true,
Else return false

Clearly VerFactor is a verifier for FACTOR: if cis a certificate for
FACTOR (i.e., is a factor of n below bound b), VerFactor will identify
as such. It also clearly runs in polytime: checking if a divides b can
be done with the well known polytime Euclidean Algorithm. O


http://en.wikipedia.org/wiki/Euclidean_algorithm

Factoring Algorithms

The difficulty of FACTOR is central to the security of the RSA
cryptosystem, upon much of the internet’s communicaition
security is based. Currently the General number field sieve is the
best known algorithm for integer factorization running in
subexponential time:

0(2((5)3 +0(1) log(r) 3 Loglog(m)§ )

The GNFS is rather difficult to comprehend, so the (somewhat
slower but much simpler) Quadratic Sieve is a good place to start if
you're interested (the link gives an intuitive example).

2


http://en.wikipedia.org/wiki/RSA_%28cryptosystem%29
http://en.wikipedia.org/wiki/General_number_field_sieve
http://en.wikipedia.org/wiki/Quadratic_sieve

NP-Completeness: |
Hardest NP Problems



NP-Completeness

Now that we've seen a number of NP problems we're starting to
get the sense that some problems might be harder than others. For
example, multiplying two integers is easier than factoring their
product (so it would seem based on our state-of-the-art
algorithms).

A natural question arises: are some problems in NP fundamentally
harder than others? Alhough we cannot answer this until we settle
the P vs. NP question, we can ask a related question:

Are there problems in NP that are at least as hard as every other
problem in NP?



NP-Completeness

At first this might seem like an unsatisfying question: if we don’t
know if some problems in NP are fundamentally harder than
others (because we don’t know if P=NP), then what does it really
mean to talk about some problems being at least as hard as all the
others?

The idea is we're placing an upper bound on the hardness of NP
problems. If we can prove problem X e NP is at least as hard as all
other NP problems then we know that problem Y € NP is no harder.



The class NP-Complete

Here NP-complete is shown as a region inside NP where the
"hardest” problems reside.

NP-Complete

)



The class NP-Complete

NP-complete is a sub-class of NP containing problems that can be
shown to be at least as hard as all other problems in NP. The
problems in NP-complete are related to the complexity of the
entire class:

» If P=NP: Finding a polynomial-time algorithm for an
NP-complete problem would prove P=NP (more on this to
follow)

» [f PI=NP: The NP-complete class provides a reference set of
the hardest problems in NP.

(XN



Polynomial-time Reduction

Let’s move on to a more formal definition. At the heart of
NP-completeness is the notion of a polynomial-reduction. The idea
of a poly-time reduction is to take an a problem, like deciding if s is
in alanguage L4 and efficiently transform it into deciding if sgisin
language Lp.

Ok, suppose there was a way to efficiently turn some problem A
into problem B. So what?

(XN



Polynomial-time Reduction

Here's the idea: suppose you have an algorithm for solving
problem B, and that you can use it as a sub-routine as part of an
algorithm for solving problem A:

Algorithm A

Input to A B
Output from A

[——p3
N B e

We're interested in the time A takes to run (not including the call to
B), because if it's in polynomial time, then we know we can solve A
in whatever time it takes to solve B, plus a polynomial factor.c

5



Polynomial-time Reduction

Here's more pseudo-code explanation of a reduction. Let M4 and
Mp be deciders for L4 and Lg respectively. We can use
polynomial-time reduction (if one exists) to implement M4 as
follows:

My(s):
» Some code transforming sinto an appropriate s
» outg= Mp(s) //Call Mgons
» Some code transforming outg into appropriate outy
» Return outy.
We say L4 polynomial-time reduces to Lp.

(XN



Polynomial-time Reduction

So what? Well you can see where this is going: The existence of a
polynomial-time reduction from problem A to problem B means
that solving problem A is essentially no harder than solving
problem B.

That'’s because if you can prove the existence of a polynomial-time
reduction from A to B, you're effectively saying A takes however
long Btakes, plus a polynomial overhead (of converting an instance
of A into aninstance of B).

(XN



Polynomial-time Reduction

— Definition 1 (Polynomial-time Reduction).

Alanguage A is polynomial-time reducible to a language B,
written A <p B, if a polynomial-time function f: {0,1}* —
{0, 1}* exists such that for all w:

we A < flw)e B

In other words: fis a polynomial-time reduction from A to Bif
given some string w, (a) you can compute z = f(w) in polynomial

time, and (b) we A if and only if z € B. =
T



The class NP-Complete

—{ Definition 2 (NP-Complete).

Alanguage Bis NP-complete if:
1. BeNP
2. ForallAeNP,A<pB

In other words, Bis NP-complete if it is an NP problem, and there
exists a polynomial-time reduction from every other NP problem
toit.

5



Consequences of
NP-complete

If you have an algorithm to solve an NP-complete problem Bin
time O(f(n)), any other problem in NP is solvable in time
O(f(n) + poly(n)). Here are some interesting consequences:

» If Bis NP-complete and B € P then P=NP.

» If Bis NP-complete and B <p Cand C e NP, then C'is
NP-complete
» |If Band Care both NP-complete, then B <p Cbut also
C<pB
g
O



The Cook-Levin Theorem

Let’s first begin with a definition. The Boolean satisfiability
problem (SAT) is defined as follows: let ¢ be a conjunctive-normal
form (CNF) boolean equation of & clauses and n variables:

¢:(a1 ORCL2 ORag...)AND(a4 ORCL5)AND

SAT asks the following question: given ¢, is there any assignment of
variables a; . .. a, € {0, 1} such that ¢ equals TRUE?

(XN



The Cook-Levin Theorem

Theorem: SAT is NP-complete.

Proof. See Theorem 7.37 in the text for the proof. The idea is you
can convert any problem in NP into a CNF Boolean circuit in
polynomial time. This is known as the Cook-Levin theorem after
Stephen Cook and Leonid Levin who first proved this result.

(XN



Cook-Levin Theorem: So
what?

The Cook-Levin theorem establishes SAT as the first NP-complete
problem by showing that all problems in NP are polytime reducible
to SAT. That initial proof was the hard part.

Now if you have some new problem X and want to prove it
NP-complete, you only have to prove two things:

1. Problem Xisin NP
2. 3SAT<p X

(XN



Cook-Levin Theorem: So
what?

Showing a problem is in NP is straightforward enough: show it’s a
decision problem that is checkable in polynomial time.

Finding a polynomial-time reduction from 3SAT to X (if it exists) is
typically easier than showing all problems in NP reduce to X. Thus
Cook-Levin gives us a kind of toe-hold into NP-completeness.

(XN



Reduction Example 1

3SAT is a version of SAT where each clause has 3 variablese.g.,
¢ = (a1 OR a3 OR a3) AND (dl OR a4 OR a5) "

CLIQUE(G, n) is the problem where, given a graph G and a number
n, decide if there are nnodes in G that are fully connected to each
other (i.e., form an n-clique). For example, if you were friends with
two people on Facebook who were also friends with each other,
your "social graph” would contain a 3-clique.

Theorem: 3SAT<p CLIQUE.

(XN



Reduction Example 1

Proof. First you would show that you can convert ¢ into an
associated graph G in polynomial time. By "associated” we mean ¢
is satisfiable if and only if G contains a 3-clique. See Theorem 7.32

for the full proof.

Theorem: CLIQUE is NP-complete.
Proof.

1. Itiseasytosee CLIQUE isin NP: evaluating an assignment
can be done in polynomial time in ¢.

2. All problems in NP are polynomial-time reducible to CLIQUE
because all problems in NP reduce to 3SAT by the Cook-Levin

theorem, and as we saw, 3SAT reduces to CLIQUE.
g
O



Reduction Example 2

Example 2: Prove SA T'is polynomial-time reducible to the
acceptance problem for Turing machines, i.e.,, SAT <p A1

Proof. Let Bbe an algorithm for solving SAT and C'be an
algorithm for deciding A 7y, i.e., whether a given TM M accepts an
input s. We can construct Bsuch that it turns an instance of SAT
into an instance A 7y in polynomial time (see next slide).

(XN



Reduction Example 2

Baccepts a string {¢) corresponding to an instance of 3SAT, ¢. It
defines a TM M (see below) and passes (M, ¢ to C, and returns
whatever C'returned:

B({9)):

1. Construct astring (M, ¢y where Mis the description of TM M
that runs on {¢) with the following behavior. M loops through
all possible assignments of ¢. If a truth assignment ¢ such that
o(t) = true, M halts and outputs accept. Otherwise Mtries the
next assignment.

2. outg — C({(M,¢y) //Call Ctodecideif Mever accepts ¢.

3. return oute

2
O



Reduction Example 2

Proof cont'd. We need to prove 2 things: (1) B decides 3SAT, and
(2) Bruns in polynomial time (not including the call to C).

1. Meventually halts and accepts if ¢ is satisfiable. If ¢ is
unsatisfiable, M loops forever. By definition C'accepts (M, ¢)
if and only if M accepts ¢, and B simply outputs what C
outputs. Therefore B accepts if and only if ¢ is satisfiable.
Therefore algorithm Bdecides 3SAT.

2. Clearly Brunsin polynomial time: constructing string (M, ¢)
takes polynomial time in the size of ¢, and outputting C'’s
result takes polynomial (i.e., constant) time. O

2



Reduction Example 2

Theorem: A 7),is NP-Hard.
Proof.

1. All problems in NP are polynomial-time reducible to A 7y,
because all problems in NP reduce to SAT by the Cook-Levin
theorem, and as we saw, SAT reduces to A .

Notice we didn't say Az is NP-Complete. For that to be true we
would also have to show A 73, was in NP, which means solutions
are checkable in polynomial time. Except A 7/ is undecidable. Thus
itis notin NP.

(XN



