
SE 3310b

Theoretical Foundations of Software Engineering

NP-Complete and theMillion Dollar Question:
Does P=NP?

Aleksander Essex

1 / 1

P vs. NP

2 / 1

P vs. NP

How do P andNP relate? First off we note that:

§ P is the class of problems solvable by aDTM in polynomial
time. Informally it is the class of problems that can be solved
quickly,

§ NP is the class of problems solvable by anNTM in polynomial
time. Informally it is the class of problems to which proposed
solutions can be checked quickly.

3 / 1

TheMillion Dollar Question

The first thing to notice is that P is a subset ofNP: recall all DTMs
are ultimately a subset of NTMs. So whatever a DTM can solve in
polynomial time, an NTM can solve in polynomial time. Now there
are only two possibilities:

§ P!=NP: There exist problems solvable by an NTM in
polynomial time for which there exists no DTM that can solve
them in polynomial time,

§ P=NP: Every problem solvable by an NTM in polynomial time
has an equivalent DTM that can solve it in polynomial time.

4 / 1

P vs. NP
So which is it? As it turns out, this presently the greatest open
problem in computer science. In fact the ClayMathematics
Institute is offering onemillion dollars for a solution.

P

NP
P=NP

Although we still don’t know, but many people believe thatP!=NP.

5 / 1

http://en.wikipedia.org/wiki/P_versus_NP_problem
http://en.wikipedia.org/wiki/P_versus_NP_problem
http://en.wikipedia.org/wiki/Millennium_Prize_Problems

FACTOR: An Example NP
Problem

6 / 1

FACTOR: An Example NP
Problem

By the fundamental theorem of arithmetic, every integer greater
than 1 can be expressed as a unique product of prime numbers.
Given such an integer, factoring is the process of recovering the
associated prime factors.

In it’s basic form, factoring is not a decision problem, so let’s
restate it as one:

FACTOR(ă n, b ą):
If n has a factor f for 1 ă f ă b, return True.
Else return False.

7 / 1

http://en.wikipedia.org/wiki/Fundamental_theorem_of_arithmetic

FACTOR
Theorem: FACTOR P NP.
Proof: FACTOR (as stated above) is a decision problem and if
FACTOR P NP then there exists a polytime verfifer for it. Let
VerFactor be defined as follows:

VerFactor(ă n, b ą, c)
If b divides n return true,
Else return false

Clearly VerFactor is a verifier for FACTOR: if c is a certificate for
FACTOR (i.e., is a factor of n below bound b), VerFactor will identify
as such. It also clearly runs in polytime: checking if a divides b can
be done with the well known polytime Euclidean Algorithm.

8 / 1

http://en.wikipedia.org/wiki/Euclidean_algorithm

Factoring Algorithms

The difficulty of FACTOR is central to the security of the RSA
cryptosystem, uponmuch of the internet’s communicaition
security is based. Currently the General number field sieve is the
best known algorithm for integer factorization running in
subexponential time:

O(2((
64
9
)
1
3+o(1)) log(n)

1
3 log log(n)

2
3)

TheGNFS is rather difficult to comprehend, so the (somewhat
slower but much simpler) Quadratic Sieve is a good place to start if
you’re interested (the link gives an intuitive example).

9 / 1

http://en.wikipedia.org/wiki/RSA_%28cryptosystem%29
http://en.wikipedia.org/wiki/General_number_field_sieve
http://en.wikipedia.org/wiki/Quadratic_sieve

NP-Completeness: The
HardestNP Problems

10 / 1

NP-Completeness

Now that we’ve seen a number ofNP problems we’re starting to
get the sense that some problemsmight be harder than others. For
example, multiplying two integers is easier than factoring their
product (so it would seem based on our state-of-the-art
algorithms).

A natural question arises: are some problems inNP fundamentally
harder than others? Alhough we cannot answer this until we settle
the P vs. NP question, we can ask a related question:

Are there problems inNP that are at least as hard as every other
problem inNP?

11 / 1

NP-Completeness

At first this might seem like an unsatisfying question: if we don’t
know if some problems inNP are fundamentally harder than
others (because we don’t know if P=NP), then what does it really
mean to talk about some problems being at least as hard as all the
others?

The idea is we’re placing an upper bound on the hardness ofNP
problems. If we can prove problem X P NP is at least as hard as all
otherNP problems thenwe know that problemY PNP is no harder.

12 / 1

The classNP-Complete
Here NP-complete is shown as a region insideNPwhere the
”hardest” problems reside.

P

NP

NP-Complete

13 / 1

The classNP-Complete

NP-complete is a sub-class ofNP containing problems that can be
shown to be at least as hard as all other problems inNP. The
problems in NP-complete are related to the complexity of the
entire class:

§ If P=NP: Finding a polynomial-time algorithm for an
NP-complete problemwould prove P=NP (more on this to
follow)

§ If P!=NP: TheNP-complete class provides a reference set of
the hardest problems inNP.

14 / 1

Polynomial-time Reduction

Let’s move on to a more formal definition. At the heart of
NP-completeness is the notion of a polynomial-reduction. The idea
of a poly-time reduction is to take an a problem, like deciding if sA is
in a language LA and efficiently transform it into deciding if sB is in
language LB.

Ok, suppose there was a way to efficiently turn some problemA
into problemB. So what?

15 / 1

Polynomial-time Reduction
Here’s the idea: suppose you have an algorithm for solving
problemB, and that you can use it as a sub-routine as part of an
algorithm for solving problemA:

Algorithm A
Algorithm

B

Algorithm A

Input to A
Output from A

Input
to
B

Output
from

B

polynomially
many operations

polynomially
many operations

We’re interested in the timeA takes to run (not including the call to
B), because if it’s in polynomial time, then we knowwe can solveA
in whatever time it takes to solveB, plus a polynomial factor.

16 / 1

Polynomial-time Reduction

Here’s more pseudo-code explanation of a reduction. LetMA and
MB be deciders for LA and LB respectively. We can use
polynomial-time reduction (if one exists) to implementMA as
follows:

MA(s):
§ Some code transforming s into an appropriate s1

§ outB =MB(s1) // CallMB on s1

§ Some code transforming outB into appropriate outA
§ Return outA.

We say LA polynomial-time reduces toLB.

17 / 1

Polynomial-time Reduction

So what? Well you can see where this is going: The existence of a
polynomial-time reduction from problemA to problemBmeans
that solving problemA is essentially no harder than solving
problemB.

That’s because if you can prove the existence of a polynomial-time
reduction fromA toB, you’re effectively sayingA takes however
longB takes, plus a polynomial overhead (of converting an instance
ofA into an instance ofB).

18 / 1

Polynomial-time Reduction

A languageA is polynomial-time reducible to a languageB,
written A ďP B, if a polynomial-time function f : t0, 1u˚ Ñ

t0, 1u˚ exists such that for allw :

w P A ðñ f(w) P B

Definition 1 (Polynomial-time Reduction).

In other words: f is a polynomial-time reduction fromA toB if
given some stringw, (a) you can compute x = f(w) in polynomial
time, and (b)w P A if and only if x P B.

19 / 1

The classNP-Complete

A languageB isNP-complete if:

1. B P NP

2. For allA P NP,A ďP B

Definition 2 (NP-Complete).

In other words,B isNP-complete if it is anNP problem, and there
exists a polynomial-time reduction from every otherNP problem
to it.

20 / 1

Consequences of
NP-complete

If you have an algorithm to solve an NP-complete problemB in
timeO(f(n)), any other problem inNP is solvable in time
O(f(n) + poly(n)). Here are some interesting consequences:

§ IfB is NP-complete andB P P then P=NP.

§ IfB is NP-complete andB ďP C andC P NP, thenC is
NP-complete

§ IfB andC are both NP-complete, thenB ďP C but also
C ďP B

21 / 1

The Cook-Levin Theorem

Let’s first begin with a definition. The Boolean satisfiability
problem (SAT) is defined as follows: let ϕ be a conjunctive-normal
form (CNF) boolean equation of k clauses and n variables:

ϕ = (a1 OR a2 OR a3 . . .) AND (a4 OR a5 . . .) AND . . .

SAT asks the following question: givenϕ, is there any assignment of
variables a1 . . . an P t0, 1u such that ϕ equals TRUE?

22 / 1

The Cook-Levin Theorem

Theorem: SAT is NP-complete.

Proof. See Theorem 7.37 in the text for the proof. The idea is you
can convert any problem inNP into a CNF Boolean circuit in
polynomial time. This is known as theCook-Levin theorem after
Stephen Cook and Leonid Levin who first proved this result.

23 / 1

Cook-Levin Theorem: So
what?

The Cook-Levin theorem establishes SAT as the first NP-complete
problem by showing that all problems in NP are polytime reducible
to SAT. That initial proof was the hard part.

Now if you have some new problemX and want to prove it
NP-complete, you only have to prove two things:

1. ProblemX is inNP

2. 3SATďP X

24 / 1

Cook-Levin Theorem: So
what?

Showing a problem is inNP is straightforward enough: show it’s a
decision problem that is checkable in polynomial time.

Finding a polynomial-time reduction from 3SAT toX (if it exists) is
typically easier than showing all problems inNP reduce toX. Thus
Cook-Levin gives us a kind of toe-hold into NP-completeness.

25 / 1

Reduction Example 1

3SAT is a version of SATwhere each clause has 3 variables e.g.,

ϕ = (a1 OR ā2 OR a3) AND (ā1 OR a4 OR a5) . . .

CLIQUE(G,n) is the problemwhere, given a graphG and a number
n, decide if there are n nodes inG that are fully connected to each
other (i.e., form an n-clique). For example, if you were friends with
two people on Facebook whowere also friends with each other,
your ”social graph” would contain a 3-clique.

Theorem: 3SATďP CLIQUE.

26 / 1

Reduction Example 1
Proof. First you would show that you can convert ϕ into an
associated graphG in polynomial time. By ”associated” wemean ϕ
is satisfiable if and only ifG contains a 3-clique. See Theorem 7.32
for the full proof.

Theorem: CLIQUE is NP-complete.
Proof.

1. It is easy to see CLIQUE is inNP: evaluating an assignment
can be done in polynomial time in ϕ.

2. All problems inNP are polynomial-time reducible to CLIQUE
because all problems inNP reduce to 3SAT by the Cook-Levin
theorem, and as we saw, 3SAT reduces to CLIQUE.

27 / 1

Reduction Example 2

Example 2: Prove SAT is polynomial-time reducible to the
acceptance problem for Turing machines, i.e., SAT ďP ATM.

Proof. LetB be an algorithm for solving SAT andC be an
algorithm for decidingATM, i.e.,whether a given TMM accepts an
input s. We can constructB such that it turns an instance of SAT
into an instanceATM in polynomial time (see next slide).

28 / 1

Reduction Example 2

B accepts a string xϕy corresponding to an instance of 3SAT, ϕ. It
defines a TMM (see below) and passes xM, ϕy toC , and returns
whateverC returned:

B(xϕy):

1. Construct a string xM, ϕywhereM is the description of TMM
that runs on xϕywith the following behavior. M loops through
all possible assignments of ϕ. If a truth assignment t such that
ϕ(t) = true,M halts and outputs accept. OtherwiseM tries the
next assignment.

2. outC Ð C (xM, ϕy) // CallC to decide ifM ever accepts ϕ.

3. return outC

29 / 1

Reduction Example 2

Proof cont’d. We need to prove 2 things: (1)B decides 3SAT, and
(2)B runs in polynomial time (not including the call toC).

1. M eventually halts and accepts if ϕ is satisfiable. If ϕ is
unsatisfiable,M loops forever. By definitionC accepts xM, ϕy

if and only ifM accepts ϕ, andB simply outputs whatC
outputs. ThereforeB accepts if and only if ϕ is satisfiable.
Therefore algorithmB decides 3SAT.

2. ClearlyB runs in polynomial time: constructing string xM, ϕy

takes polynomial time in the size of ϕ, and outputtingC ’s
result takes polynomial (i.e., constant) time.

30 / 1

Reduction Example 2

Theorem: ATM is NP-Hard.
Proof.

1. All problems inNP are polynomial-time reducible toATM
because all problems inNP reduce to SAT by the Cook-Levin
theorem, and as we saw, SAT reduces toATM.

Notice we didn’t sayATM is NP-Complete. For that to be true we
would also have to showATM was inNP, which means solutions
are checkable in polynomial time. ExceptATM is undecidable. Thus
it is not inNP.

31 / 1

