
SE 3310b

Theoretical Foundations of Software Engineering

Introduction to Computational Complexity. The
Classes P andNP

Aleksander Essex

1 / 23



Intro to Computational
Complexity

In the previous lectures we concerned ourselves with issues of
decidability and recognizability, i.e., what is computable in theory?
We now turn our attention to a related subject: what is
computable in practice?

Computational complexity is an area of study that asks a simple
question: how the computational requirements of a problem grow
relative to input size? From this point forward, we’ll be focusing on
problems that are decidable. As we’ll see, however, solvable in
theory does not imply solvable in practice.

2 / 23



Computational
Requirements

What do wemean by computation requirements? There are a
number ofways you could quantify the requirements of computing:

§ Time

§ Memory

§ Circuit complexity

§ Cost, etc

Ourmain focus for the rest of the course will be time, i.e., how does
the running time of an algorithm grow relative to the size of an
input argument?

3 / 23



Running Time

4 / 23



Running Time
How dowemeasure running time? We define it in terms of how
many steps a TM takes to decide the problem:

The running time (or time complexity) of a deterministic Tur-
ing machine (DTM)M is the function t : N Ñ N , where t(n)
is the maximum number of steps M takes on an n-character
string.

Definition 1 (Running time).

Notice that our definition of running time is framed in terms of the
worst case.

5 / 23



Big-OhNotation

Let’s take a moment to review Big-Oh notation.

Let f, g be functions. We say f(n) = O(g(n)) if there exists a
constant c and threshold n0 such that for every n ě n0 we
have:

f(n) ď cg(n)

Definition 2 (Big-OhNotation).

In other words f(n) = O(g(n)) if g grows as fast or faster than f.

6 / 23



Consequences of Big-Oh

Suppose we have an algorithmA that solves a problem inO(n)
time. That is a linear increase in input size results in a linear
increase in run time. Now consider another algorithmB that solves
the same problem inO(2n) time. Here a linear increase in input
results in an exponential increase in run time.

Question: which algorithm is faster? Well a linear function clearly
growsmore slowly than an exponential function, right? But from
definition, all we are guaranteeing is that there is some crossover
point n0 such that for n ě n0. But what if all the real-world
instances of the problem exist in a region where n ă n0?

7 / 23



Consequences of Big-Oh

Consequence: Just because the complexity of one algorithm (or
problem) is less than another, doesn’t mean its faster to solve in all
cases. There are situations (though not many) where an
exponentially growing algorithm is faster than a linear growing
algorithm for real-world instances.

So, while there are counter examples where a ”hard” problem
might be easier to solve than an ”easy” problem, ultimately we’re
focused on the hardness of the problem in general.

8 / 23



Time Complexity

Let t : N Ñ R+ bea function. Wedefine the timecomplexity
class DTIME(t(n)) to be the collection of all languages that
are decidable by a DTM inO(t(n)) steps.

Definition 3 (DTIME).

9 / 23



SomeCommon Running
Times
Here are some common forms of t() (i.e., running times):

Name Running time Example
Constant O(1) Integer is even?

Logarithmic O(log(n)) Binary search
Linear O(n) Smallest item in array

Linearithmic O(n log(n)) Merge sort
Quadratic O(n) Bubble sort
Polynomial O(poly(n)) Greatest common divisor

Sub-exponential O(2log(n)) Factoring
Exponential O(2poly(n)) Brute-force search

10 / 23



Basic Complexity Classes

The complexity class P is defined as all problems solvable by
a DTM in polynomial time, i.e.,

P =
ď

kě0

DTIME(nk)

Definition 4 (The class P).

11 / 23



Basic Complexity Classes

The complexity class Exp is defined as all problems solvable
by a DTM in exponential time, i.e.,

Exp =
ď

kě0

DTIME(2nk
)

Definition 5 (The class Exp).

12 / 23



Relationship Between Basic
Classes

P

EXP

DTIME

13 / 23



Non-deterministic Time

So far we’ve considered the running time of deterministic Turing
machines. What about non-deterministic ones? Recall a
non-deterministic Turing machine (NTM)M decides a language L if
for allw P Σ˚:

1. Every pathM takes onw halts,

2. w P L iff at least one path accepts,

3. w R L iff every path rejects.

14 / 23



Non-deterministic Time

The running time (or time complexity) of a non-deterministic
Turing machine (NTM) M is the function t : N Ñ N , where
t(n) is the maximum number of steps M takes in every com-
putational path on any n-character string.

Definition 6 (Running time).

Here again running time is defined in terms of theworst case.

15 / 23



Non-deterministic Time

Let t : N Ñ R+ bea function. Wedefine the timecomplexity
class NTIME(t(n)) to be the collection of all languages that
are decidable by an NTM inO(t(n)) steps.

Definition 7 (NTIME).

16 / 23



Basic Complexity Classes

The complexity class NP is defined as all problems solvable
by an NTM in polynomial time, i.e.,

NP =
ď

kě0

NTIME(nk)

Definition 8 (The classNP).

17 / 23



Basic Complexity Classes

ThecomplexityclassNEXP isdefinedasall problemssolvable
by a NTM in exponential time, i.e.,

NEXP =
ď

kě0

NTIME(2nk
)

Definition 9 (The classNEXP).

18 / 23



Relationship Between Basic
Classes

NP

NEXP

NTIME

19 / 23



Running Time: DTMs vs
NTMs

...

Running Time

DTM

...

NTM

20 / 23


