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Abstract—Real-world applications of record linkage often re-
quire matching to be robust in spite of small variations in string
fields. For example, two health-care providers should be able to
detect a patient in common, even if one record contains a typo
or transcription error. In the privacy-preserving setting, however,
the problem of approximate string matching has been cast as a
trade-off between security and practicality, and the literature has
focused mainly on Bloom filter encodings, an approach which can
leak significant information about the underlying records.

We present a novel public-key construction for secure two-
party evaluation of threshold functions in restricted domains
based on embeddings found in the message spaces of additively
homomorphic encryption schemes. We use this to construct
an efficient two-party protocol for privately computing the
threshold Dice coefficient. Relative to the approach of Bloom
filter encodings, our proposal offers formal security guarantees
and greater matching accuracy. We implement the protocol and
demonstrate the feasibility of this approach in linking medium
sized patient databases with tens of thousands of records.

Index Terms—Homomorphic encryption, secure computation,
approximate string matching, privacy-preserving records linkage

I. INTRODUCTION

RECORD linkage is an important activity in health data
science which seeks to identify records across datasets

belonging to a single entity. Common applications in the health
setting include public-health surveillance, efficient allocation
of resources, detecting double-enrollments in clinical trials,
and creating high-quality medical research datasets. Legisla-
tive and policy restrictions such as the U.S. Health Insurance
Portability and Accountability Act (HIPAA) restrict data shar-
ing between organizations for privacy purposes. This gives rise
to the challenge of privacy-preserving record linkage, i.e., a
records-linkage functionality that reveals only the identities of
patients who are present in both datasets.

This challenge is made considerably harder when linkage
must be robust against errors and variations in string fields. In
real-world applications, errors can originate from a variety of
sources. Common sources include: character edits (a random
character is substituted, inserted or deleted); keyboard edits
due to human typing mistakes; optical character recognition
(OCR) errors due to misclassifications by OCR software; and
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phonetic errors during speech transcription due to mispro-
nunciation, or ambiguity between spoken names, and their
corresponding spelling [1].

In this paper, we consider the problem of privacy-preserving
approximate matching, i.e., linking records in the privacy-
preserving setting in a manner that is robust against such
variations.

A. Limitations of Existing Approaches

Solutions to secure approximate matching must account for a
potentially staggering number of possible variations, making
a naive public-key approach too computationally intensive to
be practical in a real-world setting.

One popular method for approximate matching is Bloom
filter encodings (BFEs) [2]. The approach involves parties
running strings through a type of locality-preserving hash
function in which similar strings produce similar hashes. Data
holders send these hashes to a third party linker, who searches
for pairs with similar hashes. The main advantage of this
approach is speed—the matching algorithm can be run on the
hash values directly.

This advantage, however, is simultaneously the cause of
its two most significant limitations. One is that it can only
approximate its ideal functionality; matching the similarity
of hashes produces errors relative to matching the similarity
of the strings outright. The second, and most important, is
that Bloom filter encodings are fundamentally incompatible
with formal security notions or guarantees. Localized fea-
tures of the string always affect the same bits of the hash,
making BFEs semantically insecure by their very design, and
numerous papers have proposed cryptanalytic techniques to
recover information about underlying patient data [3]–[6].
More recent work has sought to disrupt cryptanalytic efforts
through increasingly elaborate counter-measures [4], [7], [8]
to mitigate these limitations. Any improvements to security,
however, can only be heuristically measured and are often
accomplished at the expense of matching accuracy.

B. Contribution

In this paper, we seek a public-key solution to approximate
string matching that provides formal security guarantees, but
is practical for real-world linkage applications. We introduce
a novel public-key construction for computing threshold func-
tions in restricted domains based on embeddings found in
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the message spaces of additively homomorphic encryption
schemes. We propose an efficient and secure protocol in
the semi-honest model for computing the threshold Dice
coefficient. We implement this protocol and demonstrate its
feasibility by linking two 20, 000 patient record databases in
under 2 hours at a cloud computing cost of around $2. The
contributions of this paper include:

• A novel approach for homomorphically approximating
threshold functions on limited domains in the integer
factorization setting,

• An efficient protocol for approximate string matching,
• A simulation-based proof of security of the protocol in

the honest-but-curious setting,
• Implementation and performance evaluation demonstrat-

ing the feasibility of linking patient name databases in
the tens of thousands of records.

II. BACKGROUND

A. Approximate Matching

A common approach to approximate string matching in the
field of records linkage involves decomposing strings into sets
of n-grams and applying a set similarity metric between the
two sets [2], [4], [7], [9]–[11]. Without loss of generality, in
this paper we will focus on bigram decompositions (i.e., n =
2).

Definition 1 (Bigrams). Let s ∈ Σ∗ be a string defined on
an alphabet Σ, and let ‘ ’ be a character in which 6∈ Σ,
which will be used to create special bigrams representing
the beginning and end of a string. Let s(i) denote the i-th
character of s. Let ‖ denote string concatenation. The set of
bigrams of an `-character string s is defined as:

Bigrams(s) = {t(1)t(2), . . . , t(`− 1)t(`)}
where t = ‖ s ‖ .

For example,

Bigrams(CRYPTO) = { C, CR, RY, YP, PT, TO, O }.

The set of all bigrams under Definition 1 is:

BG = { A, B, . . . , Z, A , B , . . . , Z , AA, AB, . . . , ZZ}.

With the lexicographic ordering above, we can refer to the first
bigram, i.e., BG(1) = A, the second bigram, BG(2) = B,
and so on. The set of bigrams has cardinality |BG| = 2 ·26 +
262 = 728. A bigram decomposition Bigrams(s) of a string
s is a subset of BG, and thus for all s ∈ Σ∗, |Bigrams(s)| ≤
728.

B. Set Similarity

A common metric of set similarity used in the approximate
matching literature is the Dice coefficient. Given two sets a,b:

Dice(a,b) =
2 · |a ∩ b|
|a|+ |b|

. (1)

As an example, let a = Bigrams(CRYPTO) and b =
Bigrams(KRYPTO), the corresponding Dice coefficient would
be

Dice(a,b) =
2 · 5
7 + 7

= 0.71

Grzebala and Cheatham [1] note that the Dice coefficient is
typically preferable to the related Jaccard index in terms of
matching accuracy, and thus we will concentrate primarily
on the former for the remainder of this paper, though a
protocol for computing the latter would require only a small
modification to the protocol presented in this paper. In the
secure approximate matching setting we are interested in
computing only whether the similarity between two strings
exceeds a given threshold.

Definition 2 (Threshold Dice coefficient). Given two sets a,b,
and a match threshold 0 ≤ t ≤ 1, we define the threshold Dice
coefficient as follows:

ThreshDice(a,b, t) =

{
1 Dice(a,b) ≥ t
0 otherwise.

(2)

C. Secure Approximate Matching

We define records linkage between two parties, PA and
PB , whose goal is to identify all records in their respective
databases referring to the same entity (i.e., same patient).
Extensive literature exists on the topic of privacy-preserving
records linkage [1], [10]–[13], especially identifying record
fields that match exactly. In this paper, we focus instead on
the approximate matching of string fields, and define our
ideal functionality in Functionality 1 as follows.

Functionality 1: Approximate string matching for
records linkage
• Public parameters: Match threshold t, database

sizes m,n.
• Private inputs: Party PA holds a list of patient

names A = [a1, . . . , an]. Party PB holds a list of
patient names B = [b1, . . . , bm].

• Functionality: For each ai ∈ A and bj ∈ B:
1) Let ai ← Bigrams(ai),bi ← Bigrams(bi)
2) Let dij ← ThreshDice(ai,bi, t)

• Output: For any dij = 1, Pa learns i.

III. RELATED WORK

The literature on record linkage is extensive, as is the field
of privacy-preserving record linkage. We direct the reader to
the survey of private record linkage techniques by Vatsalan et
al. [11], and the survey of techniques for approximate string
matching by Grzebala and Cheatham [1].

A related problem in the literature is privacy-preserving
pattern matching in which one party learns the locations in a
long text where a given pattern appears. Hazay and Toft [14]
propose a two-party pattern matching approach in the mali-
cious model based on the additive homomorphic properties
of Elgamal, which was extended by Vergnaud [15] based on
the Fast Fourier Transform. Chase and Shen [16] approach
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the problem of outsourced substring queries using searchable
symmetric-key encryption. Kolesnikov et al. [17] approach the
problem of secure wildcard matching with oblivious transfer
extensions, while the work of Wei et al. [18] incorporates
secret sharing.

Much of the work in the public-key setting toward secure
evaluation of the threshold Dice coefficient has focused on
computing Functionality 1 under partial encryption. Randall et
al. [19] propose a fully homomorphic solution for computing
the Dice coefficient based on the ring learning with error
problem. The construction computes inner-products of Bloom
filters under encryption, but the division and threshold steps of
Equations 1 and 2 are computed in the clear. Vatsalan et al. [8]
propose a similar construction based on additively homomor-
phic encryption for multiple parties where the threshold is also
computed in the clear. Cheon et al. [20] proposed a circuit-
based approach to the related problem of secure edit distance
based on somewhat-homomorphic encryption.

Public-key approaches in general, however, are often re-
garded as too computationally intensive [4], [10], [11], [21],
and much of the literature has chosen to trade security guar-
antees in favor of efficiency.

A. Bloom Filter Encodings

Bloom filter encodings (BFEs) were proposed by Schnell [2]
as a computationally efficient method for approximate match-
ing based on the original data structure of Bloom [22]. A
Bloom filter is an `-bit vector. k secret hash functions hi :
{0, 1}∗ → Z` are defined between the two parties. An element
x ∈ {0, 1}∗ is inserted into a filter by setting the bit positions
pointed to by the respective outputs of h1(x) . . . hk(x).

Each party computes encodings of its respective names and
sends the filters to a third-party linker L to be matched.
The linker computes the threshold Dice coefficient between
each filter’s pair and reports any that exceed the threshold.
Bloom filter encodings are not semantically secure by design;
similar plaintexts result in similar Bloom filters allowing L to
perform the matching. Despite being the subject of ongoing
cryptanalytic efforts [3]–[6], [23], Bloom filters continue to be
applied in approximate matching applications [21], [24]–[27].

Recently Lazrig et al. [28] proposed performing the Dice
coefficient calculation of Bloom filter encodings using garbled
circuits. However, Bloom filter encodings are noisy relative to
the ideal functionality, which can lead to matching errors.

In the following section, we propose a solution that fully
realizes Functionality 1 using a novel cryptographic construc-
tion that homomorphically computes the threshold in a single
public-key operation.

IV. DEFINITIONS AND NOTATIONS

We begin with several security definitions and notations.

Definition 3 (Computational indistinguishability). Given a
security parameter ρ, a function µ(ρ) is negligible in ρ if for
every polynomial p(·), there exists a ρ0 such that µ(ρ) < 1

p(ρ)
for all ρ > ρ0. We say two distribution ensembles X and Y

are computationally indistinguishable if for every polynomial
time distinguisher D there exists a negligible ν(·) such that∣∣∣Pr[D(X) = 1]− Pr[D(Y ) = 1]

∣∣∣ < ν(ρ).

We use the notation X
c≡ Y to denote computational indistin-

guishability of X and Y .

Definition 4 (Semantic security under Chosen plaintext at-
tack). Let CS = {Gen,Enc,Dec} be a public key encryption
scheme. Let µ(ρ) be a negligible function in ρ, and A be a
non-uniform adversary. We define the chosen plaintext attack
experiment ExpCPAA,CS(ρ) in the standard way: PK ← Gen(1ρ)
is run. A can sample the output of Enc(m) polynomially many
times for chosen m. Finally, A chooses two messages m0,m1.
c = Enc(mb) is computed for b ←$ {0, 1} and given to A,
who outputs a guess g for b. The experiment returns 1 if g = b,
and 0 otherwise. CS is semantically secure against chosen
plaintext attack if, for every polynomial adversary A:

Pr
[
ExpCPAA,CS(ρ) = 1

]
≤ 1

2
+ µ(ρ).

Definition 5 (Semi-honest setting). In this paper we work the
semi-honest (honest-but-curious) model: two parties PA, PB
honestly follow the protocol but might try to analyze the
transcript to infer more information about the other party’s
inputs. Let f = (fA, fB) be a two-party functionality, and let
π be a protocol for computing f . Let PA, PB have respective
inputs xA, xB . The view of party PA of the execution of π on
their combined input x = (xA, xB) is denoted as

ViewPA
(x) = (xA, rA,msgA),

where xA is PA’s input to the protocol, rA is all random
values generated by PA, and msgA is the set of all messages
received by PA during the execution of π. The output of PA in
the execution of π is denoted OutputPA

(x) and is computable
from ViewPA

(x). Similarly, ViewPB
(x) = (xB , rB ,msgB)

and OutputPB
(x) denotes PB’s view and output of protocol

π on input x.

Definition 6 (Secure evaluation). Protocol π securely eval-
uates f in the presence of a semi-honest adversary if there
exists probabilistic polynomial-time algorithms P ∗A and P ∗B
such that[

P ∗A
(
xA, fA(x)

)
, fB(x)

] c≡
[
ViewPA

(x),OutputPB
(x)
]

and[
P ∗B
(
xB , fB(x)

)
, fA(x)

] c≡
[
ViewPB

(x),OutputPA
(x)
]
.

Let the notation JxK denote the encryption of a plaintext x
in a semantically-secure additively homomorphic public-key
encryption scheme. Let the notation r←$S denote an element
r sampled uniformly at random from a set S. Let Z,Zn and
Z∗n respectively denote the set of integers, the set of integers
modulo an integer n > 0, and the set of integers relatively
prime to n. Throughout this paper we use the notation Zp and
Z∗p in the context of a prime p. Let q|(p−1), and let Gq denote
the cyclic subgroup of Z∗p of order q.
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x 0 1 2 3 4 5 6 7 8 9 10

QR277(x+ 179) 0 0 0 0 0 0 1 1 1 1 1

τ6(x) 0 0 0 0 0 0 1 1 1 1 1

TABLE I
EXAMPLE 10-APPROXIMATION OF τ6(x) IN Z277 AT 179.

Definition 7 (Quadratic residuosity). Recall the Legendre
symbol of an integer x modulo prime p:(

x

p

)
≡ x

p−1
2 mod p (3)

where
(
x
p

)
∈ {−1, 0, 1}. An integer x is a quadratic residue

modulo p if there exists some integer y such that y2 ≡ x mod
p. Let QRp : Z × Z → {0, 1} be a function denoting the
quadratic residuosity of an integer x ∈ Z modulo p ∈ Z:

QRp(x) =

{
1 if x is a quadratic residue modulo p.
0 otherwise.

(4)

Definition 8 (Threshold function). For a threshold t ∈ Z+, let
τt : Z+ → {0, 1} be a threshold function defined as follows:

τt(x) =

{
1 if x ≥ t
0 otherwise.

(5)

A. Approximating Threshold Functions in Zp
Consider the Legendre symbols of a sequence of successive
elements, x, (x+1), . . . , (x+k) in Zp. Except for squares in Z,
which always have a Legendre symbol of 1, such a sequence
takes on an irregular, mostly random-looking appearance.

The intuition of our approach comes from the observation
that, for certain primes, this sequence may contain subse-
quences of regularity that locally approximate the output of
some well-behaved function. Of course, such an approxi-
mation, if it were present, would be entirely coincidental.
Its presence, nevertheless, can be exploited to effectively
evaluate the function over a restricted domain. Specifically,
we exploit the presence of such “well-behaved” subsequences
to approximate threshold functions. The intuition is that for a
threshold function τt, there may exist a prime s for which a
subsequence generated by QRs locally approximates τt.

Definition 9 (d-approximation of τt). Let s be a prime and
let 0 < f ≤ s be a value such that

QRs(x+ f) = τt(x) (6)

for all x in the range 0 ≤ x ≤ d. We say the quadratic
residuosity function QRs d-approximates threshold function τt
at f .

For example, QR227 10-approximates the threshold function
τ6 at 179 (see Table I). Using this approach in conjunction
with a semantically secure encryption scheme that is additively
homomorphic modulo s, we will show how this can be used
to evaluate the threshold Dice coefficient homomorphically.

V. ENCRYPTION SCHEME

We now discuss our public-key method for homomorphically
evaluating a d-approximation of τt. Let CS = {Gen,Enc,Dec}
be a semantically secure, additively homomorphic public-key
encryption scheme. Let M and C respectively denote the
plaintext and ciphertext spaces of CS . For any two messages
m1,m2 ∈M let,

Dec
(
Enc(m1) · Enc(m2)

)
= (m1 +m2) mod s

for a prime s. The value s will be chosen such that QRs
d-approximates τt. For concreteness and efficiency we will
specify CS as special case of the cryptosystem due to Damgård
et al. [29], however other options include the cryptosystems
due to Benaloh [30], and Groth [31], [32], or more broadly, any
additively homomorphic cryptosystem that can accommodate
a message space of order s.

Let G be an algorithm that accepts a security parameter
ρ ∈ Z+, threshold t ∈ Z+ and domain bound d ∈ Z+ and
outputs:

1) A pair of integers (`, w), where the factorization of the
product of two random `-bit primes is computationally
infeasible, and where the discrete logarithm in a group
of prime w-bit order is computationally infeasible in the
security parameter,

2) A prime s, and offset 0 < f < s such that f + d < s
and QRs(x+ f) = τt(x) for 0 ≤ x < d.

See Table V for computationally derived examples of (f, s)
for 2µ-approximating a threshold function τµ. We now
specify key generation, encryption, and decryption functions:

Gen(ρ): Given security parameter ρ > 0, run G(ρ, t, d)
to obtain (`, w, s, f) as defined above. Pick two
random w-bit primes u, v. Let n = pq for primes
p and q such that su|(p − 1), sv|(q − 1). Let Gsuv
denote the unique subgroup of Z∗n which has order
su in Z∗p and order sv in Z∗q . Let Guv denote the
subgroup of Z∗n with order uv. Let g be a generator
of Gsuv and let h be a generator of Guv . Compute
µ = (uv)−1 mod s, and set λ = uvµ. The public
key is PK = (n, g, h, w, d, f, s, t). The private key is
SK = λ.

Enc(PK,m): For a message m in the range 0 ≤ m ≤ d, pick
a random element r←$ [1, . . . , 2w − 1] and compute

C = gmhr mod n.

Output ciphertext C.

Dec(SK, C): To decrypt a ciphertext C using private key SK,
compute

Cλ = Cuvµ = (gm)uvµ(hr)uvµ = (gm)uv(uv)
−1

= gm.

Recover m by computing the discrete logarithm
logs(g

m). This is efficient for small values of s.1

Output QRs(m).

1s would typically be small enough for logs(g
m) to be precomputed.
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Theorem 1 (Semantic security of CS). The public-key encryp-
tion scheme defined by CS = {Gen,Enc,Dec} is semantically
secure under chosen plaintext attack.

Proof. We begin with the assumption that the public-key
scheme due to Dargård et al. [29] (i.e., DGK) is semantically
secure, and then show a reduction from their scheme to ours.

Suppose there existed an algorithm A′ that accepted an
element x ∈ Z∗n and a public-key PK = (n, g, h, w, d, f, s, t),
and had a non-negligible advantage in guessing whether x
was a generator of Gsuv , i.e., whether x is a valid non-zero
ciphertext in CS .

We briefly recall the particulars of the DGK cryptosystem,
maintaining its original variable naming conventions for the
duration of this proof. Let PKDGK = (n, g, h, u, t) and
SK = (p, q, vp, vq) such that vq|(p − 1), vq|(q − 1), n = pq.
Let be and g, h generate subgroups of Z∗n as follows: g has
order uvp mod p and order uvq mod q. h has order vp mod p
and order vq mod q. EncDGK(m) = gmhr for m ∈ Zu and
r←$Z2t . Observe EncDGK(0) = hr is a generator of Gvpvu
whereas EncDGK(m 6= 0) = gmhr is not. Thus the semantic
security of DGK is broken by an algorithm guessing with
advantage whether an element x ∈ Z∗n is a generator Gvpvu .

Consider an algorithm A that accepts a DGK public key
PKDGK and an element x ∈ Z∗n which outputs a guess
whether x is a generator of Gvpvu . Suppose A(PKDGK , x)
calls A′(PK′, x) where PK′ = (n, g, h, t, 1, 1, u, 1) and
outputs the result. A′ guesses if x generates Gvp,vq with
advantage, which allows A to guess with advantage. By the
assumed semantic security of DGK, A does not exist implying
neither can A′.

A. Homomorphic Properties

First, we observe that CS is additively homomorphic:

Enc(m1) · Enc(m2) = gm1hr1 · gm2hr2

= gm1+m2 · hr1+r2

= Enc(m1 +m2 mod s)

We now define the functionality for homomorphically d-
approximating the threshold function τt.

Eval(PK, c): Given ciphertext c = Enc(m), sample blinding
factor x←$ [1, . . . , s− 1] and compute

c′ =
(
c · Enc(f)

)x2

mod n.

Output c′.

Theorem 2 (Homomorphic d-approximation of τt). For 0 ≤
m < d and ciphertext c = Enc(m), Eval(c) homomorphically
evaluates τt(m), i.e.,

Dec
(
Eval(Enc(m))

)
= τt(m).

Proof. Expanding Eval
(
Enc(m)

)
we have:

Eval
(
Enc(m)

)
= (Enc(m) · Enc(f))x

2

=
(
gmhr1 · gfhr2

)x2

= g(m+f)x2

hr
′

= Enc
(
(m+ f) · x2

)
= c′.

By the law of quadratic reciprocity, the product of two
elements a, b ∈ Zs has the following property:

QRs(ab) = QRs(a) · QRs(b).

Therefore decrypting c′ gives:

Dec(c′) = QRs
(
(m+ f) · x2

)
= QRs(m+ f) · QRs(x

2)

= QRs(m+ f).

Recall given (t, d), Gen produces s, f ∈ PK such that
QRs(m + f) = τt(m) for 0 ≤ x ≤ d. Therefore Dec(c′) =
QRs(m+ f) = τt(m).

Theorem 3 (Blinding hiding). Decrypting Eval
(
Enc(m)

)
re-

veals no information about m beyond what is revealed by
τt(m).

Proof. Let c′ = Enc
(
(m+f)·x2

)
. Using SK = λ, the private-

key holder decrypts c′ by computing:

Dec(c′) = (c′)λ mod n

= (g(m+f)·x2

hr
′
)λ mod n

= g(m+f)·x2

mod n.

The private-key holder then computes the discrete logarithm
base g to recover m′ = (m + f) · x2 mod s, and outputs
QRs(m

′).
The goal of the proof is to show that the x2 factor blinds

(m + f), and our approach is to show m′ is uniform in the
set of quadratic residues modulo s if (m + f) is a quadratic
residue, and m′ is uniform in the set of quadratic non-residues
otherwise.

Recall that m, f, d, x were defined such that f > 0, 0 ≤
m ≤ d, f + d < s, and 1 ≤ x ≤ s. Therefore (m + f) ·
x2 6≡ 0 mod s. Let s = 2j · k + 1 for odd k. There are two
subgroups of Z∗s of interest: the subgroup G2j of order 2j , and
the subgroup Gk or order k. Let gj and gk be generators of G2j

and Gk respectively. Any element a ∈ Z∗s can be expressed
as

a = gyj g
z
k mod s

for some 0 ≤ y < 2j and 0 ≤ z < k. Suppose y is even. Then
a is a quadratic residue, since there exists a b such that b2 =
a mod s. By the same argument, if y is odd, a is a quadratic
non-residue. With this approach let us rewrite (m + f) and
blind factor x as follows:

(m+ f) = gy1j g
z1
k mod s

x = gy2j g
z2
k mod s.
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Therefore,

(m+ f) · x2 = gy1j g
z1
k · (g

y2
j g

z2
k )2 mod s

= gy1+2y2
j gz1+2z2

k mod s.

Since x is uniform in Z∗s , then z2 is uniform in Z∗k, and thus
z1+2z2 is uniform in Z∗k. Similarly, y2 is uniform in Z∗2j , and
thus if y1 is even, then y1 + 2y2 is uniform in the set of non-
zero even numbers modulo 2j , and is uniform in the set of odd
numbers modulo 2j otherwise. Therefore m′ = (m + f) · x2
is uniform among the quadratic residues modulo s if (m+ f)
is quadratic residue, and is uniform among the quadratic non-
residues otherwise.

VI. PROTOCOL FOR PRIVATE THRESHOLD APPROXIMATE
MATCHING

In this section, we present our semi-honest secure protocol for
computing the approximate string matching for records linkage
functionality (Functionality 1).

The protocol consists of two sub-protocols. The first sub-
protocol is a protocol to compute the private set intersection
cardinality of string bigrams homomorphically. The second
sub-protocol is a protocol to homomorphically compute the
threshold Dice coefficient ThreshDice using the homomorphic
d-approximation properties of CS .

A. Privately Computing Set Intersection Cardinality

The first sub-protocol takes private inputs, A =
[a1, . . . an, ] , B = [b1, . . . , bm], and for each pair
ai ∈ A, bj ∈ B, produces an encryption of the set
intersection cardinality of their bigrams, i.e.,

rij =
q
|Bigrams(ai) ∩ Bigrams(bj)|

y
.

Other public-key approaches exist for computing private
set intersection cardinalities from unrestricted domains
(see e.g. [33], [34]), however, given the restricted domain
of this application, we are able to take a more efficient
approach by exploiting the additive homomorphic properties
of cryptosystem CS . Let EncBigrams be a function that
accepts a string and produces an encrypted bigram vector, in
which the i-th ciphertext encrypts the presence (or absence)
of the i-th bigram in the string. The function is defined as
follows:

EncBigrams(String s, Public-key PK)

for 1 ≤ i ≤ 728 :

if BG(i) ∈ Bigrams(s) :

ci ← Enc(1)

else:
ci ← Enc(0)

return C = [c1, . . . , c728]

Let SetIntCard be a function that accepts a string s and an
encrypted bigram vector and outputs an encryption of the
set intersection cardinality between the bigrams of s and
the bigrams in the encrypted bigram vector. The function is

defined as follows:

SetIntCard(String s, Encrypted vector C, Public-key PK)

r ← 1

for each bg ∈ Bigrams(s) :

i← Index of bg in BG

r ← r · ci mod n, (where ci is the i-th ciphertext in C).
return r

An example of SetIntCard is shown in Table II. We define
the sub-protocol for privately computing set intersection
cardinalities in Sub-protocol 1.

Sub-protocol 1: Private Records Set Intersection
Cardinality
• Public parameters: Public key PK.
• Private inputs: Party PA holds a list of strings
A = [a1, . . . , an]. Party PB holds a list of strings
B = [b1, . . . , bm].

• The protocol:
1) For each ai ∈ A, PA computes: Ci ←

EncBigrams(ai) and sends each Ci to PB
2) For each Ci and bj ∈ B, PB computes:

rij ← SetIntCard(bj , Ci)

• Output: PB outputs all encrypted set intersection
cardinalities rij

Theorem 4 (Correctness (Sub-protocol 1)). For each ai ∈ A
and bj ∈ B, Sub-protocol 1 outputs

rij =
q
|Bigrams(ai) ∩ Bigrams(bj)|

y
.

Proof. For each ai ∈ A and bj ∈ B, rij steps 1 and 2
compute:

rij = SetIntCard(bj ,EncBigrams(ai)).

SetIntCard is run by PB , who selects encrypted bigram ci ∈ C
if and only if the i-th bigram is in Bigrams(bj). The selected
ciphertext is J1K if the i-th bigram is also in Bigrams(ai),
and is J0K otherwise. By the additive homomorphic property
of CS, the multiplication of all ciphertexts produces an
encryption of the sum of the respective plaintexts.

For each bigram bg ∈ BG, SetIntCard selects cipher-
texts of the form J1K if and only if bg ∈ Bigrams(ai)
and Bigrams(bj), and selects either J0K, or no ciphertext
otherwise. Therefore, the product of all the ciphertexts will
be the encryption of the sum of all bigrams bg ∈ BG where
bg ∈ Bigrams(ai) and Bigrams(bj), i.e., the encryption of
|Bigrams(ai) ∩ Bigrams(bj)|.

B. Privately Computing the Threshold Dice Coefficient

The next step is to define a sub-protocol for computing
the threshold dice coefficient given two privately input set
cardinalities `a = |a|, `b = |b|, and the output from Sub-
protocol 1, i.e., Enc(|a∩b|). We rearrange the threshold Dice
equation into an instance of the threshold function τt, and use
the properties of CS to homomorphically evaluate τt.
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TABLE II
EXAMPLE OF SetIntCard COMPUTING THE ENCRYPTED SET INTERSECTION CARDINALITY OF KRYPTO AND EncBigrams(CRYPTO).

_C . . . _J _K . . . O_ P_ . . . KR KS . . . PT PU . . . RY . . . TO . . . YP . . .
J1K J0K J0K J1K J0K J0K J0K J1K J0K J1K J1K J1K

↓ ↓ ↓ ↓ ↓ ↓ ↓
J0K J1K J0K J1K J1K J1K J1K

J0K · J1K · J0K · J1K · J1K · J1K · J1K mod n = J5K

We construct our d-approximation of τt to handle all pos-
sible inputs to ThreshDice up to a maximum set intersection
cardinality. Let µ be defined as the maximal allowable set
cardinality size, i.e., the respective upper bounds of `a and `b,
and |a ∩ b|. Parameterize d, t ∈ PK such that d = 2 · µ and
t = µ.

We can then use CS to homomorphically evaluate whether
an encrypted plaintext is less than, or equal to µ for a plaintext
in the range 1 . . . 2µ. Our approach is to pre-compute a value
θ such that θ + |a ∩ b| ≥ µ if and only if ThreshDice would
have yielded a match given the two strings as input. Let

DiceOffset(`a, `b, t, µ) = µ−
⌈ t

2
(`a + `b)

⌉
+ 1.

We now define the second sub-protocol (Sub-protocol 2),
which accepts PA’s and PB’s strings as private inputs, and a
ciphertext of their set intersection cardinality, and outputs an
encryption of ThreshDice evaluated on the input strings.

Sub-protocol 2: Private Threshold Dice Coefficient
• Public parameters: Public key PK. Maximum

set cardinality µ. Encrypted set-intersection car-
dinality c = JBigrams(a) ∩ Bigrams(b)K

• Private inputs: PA’s string a, PB’s string b
• The protocol:

1) PA computes: `a = |Bigrams(a)|
2) For 2 ≤ i ≤ µ, PA computes:

JθiK = Enc
(
DiceOffset(`a, i, t, µ)

)
3) PA sends Jθ2K . . . JθµK to PB in order.
4) PB computes: `b = |Bigrams(b)|
5) PB selects Jθ`bK from the list
6) PB computes d← Eval

(
Jθ`bK · c

)
• Output: PB outputs d.

Theorem 5 (Correctness (Sub-protocol 2)). Given strings a, b
as private inputs, and an encryption of their set-intersection
cardinality c, Sub-protocol 2 outputs an encryption of the
threshold Dice coefficient, i.e.,

q
ThreshDice(Bigrams(a),Bigrams(b), t)

y
.

Proof. In Step 2 of Sub-protocol 2, PA computes
DiceOffset(`a, `b, t, µ) for each possible set cardinality
of `b = |Bigrams(b)|, and in Step 3, PB selects the
corresponding Jθ`bK. Therefore,

θ`b = DiceOffset(`a, `b, t, µ)

= µ−
⌈ t

2
(`a + `b)

⌉
+ 1.

By Theorem 2, Dec(Eval(Enc(m))) = τµ(m). Let c =
JBigrams(a) ∩ Bigrams(b)K = J`a∩bK. Next recall that d, t ∈
PK were selected such that d = 2 · µ and t = µ. Therefore

Dec
(
Eval(Jθ`bK · c)

)
= Dec

(
Eval(Jθ`bK · J`a∩bK)

)
= Dec

(
Eval(Jθ`b + `a∩bK)

)
= τµ(θ`b + `a∩b)

= τµ
(
µ−

⌈ t
2

(`a + `b)
⌉

+ 1 + `a∩b
)
.

By the definition of τ in Equation 5, τµ(θ`b + `a∩b) = 1 if
θ`b + `a∩b ≥ µ (and 0 otherwise). This condition, in turn, is
satisfied if and only if `a∩b −

⌈
t
2 (`a + `b)

⌉
≥ 0, i.e., `a∩b ≥⌈

t
2 (`a+`b)

⌉
−1. Similarly, ThreshDice() outputs 1 if 2`a∩b

`a+`b
≥

t (and 0 otherwise), i.e., `a∩b ≥ t
2 (`a + `b). Therefore,

Dec
(
Eval(Jθ`bK · c)

)
= ThreshDice(Bigrams(a),Bigrams(b)).

C. Private approximate matching for records linkage

We realize Functionality 1 in Protocol 1 using Sub-protocols
1 and 2.

Protocol 1: Implementing Functionality 1 (Approx-
imate string matching for records linkage)
• Public parameters: Public key PK. Maximum

set cardinality µ. Encrypted set-intersection car-
dinality c = JBigrams(a) ∩ Bigrams(b)K

• Private inputs: Party PA holds a list of strings
A = [a1, . . . , an], and private key SK. Party PB
holds a list of strings B = [b1, . . . , bm].

• The protocol:
1) PA and PB run Sub-protocol 1 on their

respective private inputs A,B, producing
encrypted set intersection cardinalities rij
for 1 ≤ i ≤ n and 1 ≤ j ≤ m.

2) For each rij , PA and PB run Sub-protocol
2 on their respective private inputs ai, bj ,
producing encrypted threshold Dice coeffi-
cient dij .

3) For each dij , PB sends 〈dij , i〉 to PA in
randomly shuffled order.

• Output: For all 〈dij , i〉 where Dec(dij) = 1, PA
outputs i.
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Theorem 6 (Correctness (Protocol 1)). Protocol 1 imple-
ments Functionality 1 for approximate string matching for
records linkage, i.e., for all strings ai ∈ A and bj ∈ B,
PA learns the index i of any string ai ∈ A for which
ThreshDice

(
Bigrams(ai),Bigrams(bi), t

)
= 1.

Proof. The proof follows from the proofs of Theorems 4
and 5.

D. Privacy of approximate string matching protocol

We now prove Protocol 1 securely realizes Functionality 1 in
the semi-honest adversary model. We employ a simulation-
based approach to prove that, for all possible inputs A by
PA (resp. B by PB), all possible messages received from
PB (resp. PA), and all internally generated randomness, PA’s
(resp. PB’s) view of the protocol execution can be efficiently
simulated given only PA’s (resp. PB’s) own input and output.

Theorem 7 (PA’s privacy). Let PA’s input to the protocol
xA = (A,PK,SK, µ) and PB’s input to the protocol be
xB = B, and their combined input be denoted as x. Let
ViewPB

(x) represent PB’s view of the protocol during exe-
cution of Protocol 1. PB has no output from Functionality
1 which we denote as fB(x) =⊥. Let F1(x) denote the
output of Functionality 1 on the combined input x. PA outputs
fA(x) = f1(x). There exists a probabilistic polynomial-time
algorithm P ∗B such that[

P ∗B(xB ,⊥), F1(x)
] c≡

[
ViewPB

(x),OutputPA
(x)
]
.

Proof. Proving PA’s privacy is straightforward, as PB only
ever receives a fixed number of ciphertexts from PA. By the
semantic security of the encryption scheme (see Theorem 1), a
ciphertext is computationally indistinguishable from a uniform
value in Z∗n. To simulate PB’s view in Sub-protocol 1, for each
ai ∈ A, P ∗B samples C=[r1, . . . , r728] where each rj ←$ Z∗n.
The rest of PB’s view of Sub-protocol 1 (Step 2 and Output)
is simulated by computing the rijs directly from the respective
Ci’s, PB’s input B, and PK. To simulate PB’s view in each
invocation of Sub-protocol 2, for each JθiK, P ∗B samples ri ←$

Z∗n. The rest of PB’s view of Sub-protocol 2 is simulated by
computing Eval(ri · c) from b, c and ri. PB’s view of Steps 1
and 2 of Protocol 1, therefore, can be simulated by simulating
Sub-protocols 1 and 2 as described above. The remainder of
PB’s view of Protocol 1 (i.e., Step 3) can be computed directly
from the dij’s output of Sub-protocol 2.

Theorem 8 (PB’s privacy). Let ViewPA
(x) represent PA’s

view of the protocol during execution of Protocol 1, with all
other inputs and outputs defined as in PA’s case above. There
exists a probabilistic polynomial-time algorithm P ∗A such that[

P ∗A(xA, F1(x)),⊥
] c≡

[
ViewPA

(x),⊥
]
.

Proof. PB’s privacy relies on the blinding properties of the
Eval function of CS. To simulate PA’s view of Sub-protocol
1, P ∗A computes each Ci directly from each ai. PA does not
see step 2 or the output, concluding PA’s view of Sub-protocol
1. To simulate PA’s view of an instance of Sub-protocol 2,
P ∗A computes steps 1-3 directly from its private input string

TABLE III
PERFORMANCE OF CRYPTOSYSTEM CS .

Time (ms)
Security level (bits) Enc Blind Dec

112 (|n| = 2048, |u| = 224) 0.30 0.35 0.11
128 (|n| = 3072, |u| = 256) 0.61 0.74 0.28
192 (|n| = 7680, |u| = 384) 3.9 4.1 2.1

256 (|n| = 15360, |u| = 512) 15.5 16.6 8.8

a and public inputs. PA does not see steps 4-6. In Step 3 of
Protocol 1, PA receives and decrypts all dijs received from
PB , and outputs the index i of any dij for which Dec(dij) = 1.
To simulate this, P ∗A consults the output F1(x) to see which
records ai ∈ A were found to be an approximate match of
some record in B. For all such ai, it chooses a uniform random
1 ≤ j ≤ m, and a random α ←$ Z∗s such that QRs(α) = 1
and computes dij ← Enc(α) = gαhr mod n. For all other dij ,
it chooses a uniform random 1 ≤ j ≤ m, and a random β ←$

Z∗s such that QRs(α) = 0 and computes dij ← Enc(β) =
gβhr mod n. By Theorem 6, Dec(dij) = 1 if records ai ∈ A
and bj ∈ B approximately match (Dec(dij) = 0 otherwise).
By Theorem 3 (blinding hiding), for all dij = gmhr mod n,
m is a uniform quadratic residue in Z∗s if the records match,
and therefore indistinguishable from the simulated value α.
Similarly m is a uniform quadratic non-residue if the records
do not match, and therefore indistinguishable from β.

VII. IMPLEMENTATION AND PERFORMANCE

In line with related work [4], [10] we used the North Carolina
Voter Registration dataset2 maintained by the North Carolina
State Board of Elections. The list contained 7.8M records at
the time of writing. Records consist of a voter’s name, ad-
dress, and other demographic data. We used the last_name
column to create our dataset.

A. Implementing CS and Protocol 1

We implemented the encryption scheme CS from Section V
and Protocol 1 in Python.3 We used the gmpy2 library for
faster modular exponentiation. We implemented the outer en-
cryption using DGK, which offers fast encryption/decryption
due to small randomizer subgroups h, as well as the ability to
perform decryption modulo p instead of modulo n. We pre-
computed powers of g and h for faster exponentiation and
precomputed logs g

m and QRs(m) for faster decryption. We
benchmarked on an Intel Xeon E5-2697A @ 2.60GHz. For key
size |n| = 2048, we achieved an encryption/decryption round
trip time of under 500µs. With |n| = 15, 360, the round trip
time was in the low milliseconds. The performance of CS is
given in Table III.

2https://www.ncsbe.gov/data-stats/other-election-related-data
3https://github.com/aleksessex/Residue-Homomorphic-Encryption

https://www.ncsbe.gov/data-stats/other-election-related-data
https://github.com/aleksessex/Residue-Homomorphic-Encryption
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Fig. 1. Matching accuracy of Protocol 1 relative to various Bloom filter encoding parameterizations.

B. Computing Parameters to Approximate τt
Protocol 1 requires suitable parameterizations to 2µ-
approximate threshold function τµ. Finding appropriate group
orders s and offsets f was done through a brute-force search
by examining successively larger primes for suitable subse-
quences of quadratic residues. For each successively larger
prime s, the quadratic residuosity of 2, . . . , (s − 2) modulo
s was computed, and the resulting sequence was searched
for any subsequences consisting of µ quadratic non-residues,
followed by µ quadratic residues. We found instead that ap-
proximating the complement of τ consistently yielded smaller
minimum group orders. Table V lists computationally derived
minimal parameters for 2µ-approximating threshold function
τµ, i.e., the complement of τµ. These parameters can be used
to implement Protocol 1 by changing the output such that PA
outputs i if Dec(dij) = 0 (as opposed to 1).

The longest surname in the NC voter registry is 25 char-
acters, and Table V accommodates approximate matching up
to µ = 26. Although our approach can accommodate all real-
world surnames found in the dataset, future work will focus
on developing new methods to extend the upper bound on µ,
to allow matching of longer strings in other applications.

C. Matching Accuracy

The Bloom filter encoding literature typically employs
stochastic “data corrupting” algorithms to introduce realistic
typographic and transcription errors. As our protocol imple-
ments the threshold Dice coefficient, by definition there are
no matching errors relative to the ideal functionality, and thus
we do not examine the issue of corruptions.

A more meaningful comparison is the matching accuracy
of Bloom filter encodings against the ideal functionality in
the absence of corruptions. Therefore we are interested only
in how often distinct records trigger a match (false positives).
We randomly selected |A| = |B| = 1000 unique names from
the North Carolina list and matched using Protocol 1 with
BFEs of different sizes. Each record ai ∈ A was compared
against each record bi ∈ B. If ai was found to match one or
more records in B, a false positive was recorded. The number
of records in A that generated a false positive was divided by

|A| to give the false positive rate. For BFEs, we set the number
of hash functions k and filter bit length ` based on the same
ratios of k/` explored by Kuzu et al. [4]. The results of the
comparison are shown in Figure 1, demonstrating the accuracy
of our scheme relative to BFEs at the same match threshold,
especially in Grzebala and Cheatham’s recommended range of
0.55 ≤ t ≤ 0.75.

D. Record Linking Experiment

Finally, we conducted a proof-of-concept linkage experiment
on two medium-sized databases of |A|, |B| = 20, 000 records.
We used a Digital Ocean high-cpu droplet with Intel Xeon
CPU E5-2697A @ 2.60GHz, 32CPUs, 46GB memory, and
1 TB drive. We capped name lengths at 20 characters, and
used a Dice coefficient threshold of 0.9 with a |n| = 2048-bit
modulus. As an additional optimization, PA sent |Bigrams(ai)|
in plaintext, allowing PB to decide whether a match would
be possible for two records of length |A|, |B| at the given
threshold T , and to skip it otherwise.

The protocol consists of three stages: encrypting bigram sets
on PA’s end, homomorphic matching on PB’s end, and finally
decryption on PA’s end. Each stage consists of numerous
independent cryptographic operations, which we broke into
multiple jobs and ran as separate Python processes. The
performance of each stage is presented in Table IV.

Bigram encryption took just under 4 minutes and generated
5 GB of ciphertext data. Homomorphic matching took 1.35
hours and generated about 71 GB of ciphertext data. Decryp-
tion took 22 minutes. The total linking time was 1.8 hours at
a total cloud computing cost of $1.90 (USD).

VIII. CONCLUSION

We introduced a novel cryptographic construction to homo-
morphically approximate a threshold function in a restricted
domain, and a protocol to securely implement the thresh-
old Dice coefficient. Relative to Bloom filter encodings, our
scheme offers formal security guarantees and improved accu-
racy. Through this work, we hope to initiate a new avenue of
research for the challenge of secure approximate matching.
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TABLE IV
RUNNING TIME (S) OF PROTOCOL 1 AT VARYING MATCH THRESHOLDS t.

|A|, |B| = 100 Records |A|, |B| = 1000 Records
t = 0.85 t = 0.9 t = 0.95 t = 0.85 t = 0.9 t = 0.95

Encrypt record bigrams (PA) 39 39 39 382 382 382
Homomorphic Dice threshold (PB) 5.6 3.0 1.9 535 435 184

Decrypt results (PA) 1.4 1.2 0.4 141 104 43

TABLE V
MINIMAL PARAMETERS FOR 2µ-APPROXIMATING τµ .

Max set size (µ) Offset (f ) Group order (s)

3 3 11
4 26 59
5 25 59
6 60 131
7 59 131
8 58 131
9 897 1811
10 1460 2939
11 1459 2939
12 5994 12011
13 5993 12011
14 5992 12011
15 5991 12011
16 33230 66491
17 33229 66491
18 33228 66491
19 74051 148139
20 74050 148139
21 137805 275651
22 475904 951851
23 475903 951851
24 1134846 2269739
25 1134845 2269739
26 1134844 2269739
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