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ABSTRACT
Helios is an open-audit internet voting system providing
cryptographic protections to voter privacy, and election in-
tegrity. As part of these protections, Helios produces a cryp-
tographic audit trail that can be used to verify ballots were
correctly counted. Cryptographic end-to-end (E2E) election
verification schemes of this kind are a promising step toward
developing trustworthy electronic voting systems.

In this paper we approach the discussion from the flip-side
by exploring the practical potential for threats to be intro-
duced by the presence of a cryptographic audit trail. We
conducted a security analysis of the Helios implementation
and discovered a range of vulnerabilities and implemented
exploits that would: allow a malicious election official to
produce arbitrary election results with accepting proofs of
correctness; allow a malicious voter to cast a malformed bal-
lot to prevent the tally from being computed; and, allow an
attacker to surreptitiously cast a ballot on a voter’s behalf.
We also examine privacy issues including a random-number
generation bias affecting the indistinguishably of encrypted
ballots. We reported the issues and worked with the Helios
designers to fix them.

CCS Concepts
•Security and privacy → Cryptanalysis and other
attacks; Web application security; Privacy-preserving
protocols;

Keywords
Internet voting, cryptographic end-to-end verification, at-
tacks

1. INTRODUCTION
Internet voting. Like flying cars it is standard fare in our

collective vision of the future. The perceived advantages
of internet voting typically center around otherwise rea-
sonable goals like increasing voter turnout, reaching under-
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represented populations, and decreasing election costs. Al-
though these advantages themselves have been widely de-
bated, the real reason we don’t all vote online already is
because, simply put, internet voting is a really hard security
challenge. As a simplification of rather a complex problem,
the reason internet voting is harder than other security sys-
tems comes down to the tension between ballot secrecy and
election integrity. Consider that when you bank online, both
you and your bank have a record of your account totals and
transactions. So when something goes wrong, at least there’s
a shared starting point with which to pursue the correction.

Internet voting by contrast does not typically have a str-
aightforward way to answer questions about many of its
critical functionalities such as “did my vote count?” In its
most basic form, contemporary commercial internet voting
systems consist of a standard web-application framework;
Javascript is delivered to a client over TLS, and the ballot is
returned to the server and stored in a database. Other sys-
tems offer some degree of verifiability,1 but have variously
been shown to have weak procedural security [29, 32], TLS
configuration errors [30], command-line injection vulnerabil-
ities [33], etc.

Cryptographic End-to-end Verifiable Voting.
One promising paradigm to tackle these challenges is cryp-

tographic end-to-end (E2E) election verification [20], which
produces a universally verifiable cryptographic proof, allow-
ing (a) any voter to confirm the inclusion of their vote in
the overall tally, and (b) anyone to confirm the tally was
counted and decrypted correctly. Unlike conventional elec-
tions that focus on procedural controls, E2E verification fo-
cuses on providing evidence, exploiting the unique ability
of cryptography to be able to prove statements without re-
vealing any information beyond the truth of the statement
itself. Applied in the voting context that means proving the
correctness of the outcome without requiring direct access
to the voting intention of individuals.

The E2E literature is extensive, so we will briefly men-
tion a few related implementations. Chaum et al. [13] de-
veloped Scantegrity, a scheme for paper optical-scan ballots
and notably ran the first E2E-verifiable governmental elec-
tion in the City of Takoma Park, MD in 2009 [12]. They re-
peated the election 2011 with an internet voting add-on, Re-
motegrity [34]. Ryan et al. proposed another paper optical-
scan scheme, Prêt à Voter [15]. Recently Burton et al. [10,
11] adapted and deployed a variant in the Australian state

1http://www.cs.cornell.edu/˜clarkson/papers/scytl-odbp.pdf
https://www.verifiedvoting.org/resources/internet-voting
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election of Victoria. Bell et al. [7] proposed StarVote for
Travis County, TX. Delis et al. [18] piloted an end-to-end
code voting system during the 2014 European Elections in
Greece.

Helios [3] is an E2E verifiable internet voting system, and
the subject of this paper. We decided to focus on Helios
for several reasons. It is one of the oldest E2E implementa-
tions, and at over 500,000 ballots cast, is by far the largest.
It is among the only such implementations to have been ac-
tively maintained and still in continuous use. Finally, it is
perhaps the only such implementation that could be used
to run an election without any involvement of the software
designers. This creates an interesting threat model for us
to explore: an automated election-as-a-service in which the
code is being executed as-is, underscoring the the idea that
vulnerabilities are inherent to the implementation, and not
simply the result of malicious alterations to the code.

Contributions. Our contributions are as follows:

• A security analysis of Helios uncovering a number of
vulnerabilities to confidentiality, integrity and avail-
ability,

• An implementation of exploits demonstrating:

– A malicious election official rigging an election by
declaring an arbitrary election result, but issuing
a cryptographic proof that the results were cor-
rectly tallied,

– A malicious voter casting a maliciously formed
ballot preventing the tally from being decrypted,

– An XSS attack allow an attacker to cast a ballot
on a voter’s behalf.

• Discussion and lessons learned,

• Responsible disclosure and collaboration with the He-
lios designers to correct the issues presented in this
paper.

The rest of the paper is organized as follows: Sections 2 and
3 provides background and preliminaries of the cryptogra-
phy used by Helios. Section 4 presents cryptographic attack
that (a) allow a voter to prevent a Helios tally from being
computed and (b) allow an malicious election official to pro-
duce arbitrary tallies, with accepting proofs of correctness.
Section 5 describes a RNG bias that undermining the se-
mantic security of ballot encryptions. Section 6 presents the
details of a ballot stealing cross-site scripting attack. Finally
Section 7 concludes.

2. BACKGROUND AND RELATED WORK

2.1 Helios Open-Audit Internet Voting
As originally proposed by Adida [3], Helios used a mixnet-

based proof for robustness. Later Adida et al. [4] moved to a
homomorphic tally approach, in which encrypted votes are
be summed under encryption (cf. Section 3). This scheme
was used to run one of the first Helios elections, at the Uni-
versité catholique de Louvain in 2008. Today, the Helios
website claims to have been used to cast over half a mil-
lion ballots, and some organizations have used it multiple
times, including the Princeton Undergraduate Student Gov-
ernment (USG) since 20132 and the International Associa-
2https://princeton.heliosvoting.org

tion for Cryptologic Research (IACR) since 2010.3 The cur-
rent actively maintained Helios code base4 is an implementa-
tion of Helios protocol v3.5 There have also been a number
of proposals for Helios variants. Demirel et al. [19] propose
a version offering everlasting privacy. Bluens et al. [9] re-
visit a mixnet-based approach to allow more expressive vote
tallying schemes and explores the property of submission se-
curity. Tsoukalas et al. [31] also explore extending Helios to
support other voting schemes, and provide an open-source
implementation.

A number of papers have studied the security of Helios.
Estehghari and Desmedt [21] propose an attack involving
client-side malware, though the attack is admittedly outside
Helios’ stated threat model. Cortier and Smyth [16] iden-
tified an attack that would allow a voter to replay ballots
and suggest a fix. Heiderich et al. [24] proposed a number of
subtle client-side attacks to the web technology. Bernhard et
al. [8] identify pitfalls in deciding what precisely to hash for
the Fiat-Shamir heuristic, with implications to proof sound-
ness. Küsters et al. [26] propose the notion of clash attacks
in which a corrupt election authority issues multiple voters
the same receipt toward the goal of undetectably modifying
the tally. Finally, Karayumak et al. [25] and Acemyan et
al. [2, 1] have examined the usability of Helios and found
a variety of issues, and suggested a number of places for
improvement in the voter and admin interfaces.

2.2 Protocol Overview
To motivate our discussion in the following sections provide a
high-level overview of the phases of a Helios election. Other
cryptographically end-to-end verifiable voting schemes pro-
ceed in similar high-level terms, albeit using varying cryp-
tographic proof techniques.

Initial Setup. In the initial setup, the election officials set
all the relevant election parameters, including the various
ballot contests and candidates, voter lists, and election web-
site, as well as setting generating the relevant cryptographic
parameters including distributed- or threshold-shared pub-
lic keys for ballot encryption/decryption.

Ballot Casting. The voter is directed to the election web-
site and prompted to provide their login credentials. Within
the browser the voter is presented with the various ballot
contests and candidates. They mark their selections. Next,
each of the voter’s selections are separately encrypted using
an additively homomorphic public key cryptosystem. For
example, if a contest was between two candidates Alice, and
Bob, and the voter selected Alice, the booth would produce
two ciphertexts: the “Alice” ciphertext would be an encryp-
tion of 1, and the “Bob” ciphertext would be the encryption
of 0. The booth then constructs a non-interactive crypto-
graphic zero knowledge proof that the ciphertexts constitute
a valid vote. Without loss of generality, a valid vote is one
that casts either (a) a single vote for a single candidate, or
(b) no vote for any candidate (i.e., an abstention).

Finally the voter casts their ballot by posting the cipher-
texts and associated zero-knowledge proofs to the election
website. The server verifies the proofs, and rejects the bal-
lot if the proof is invalid. The voter retains a copy of their

3https://www.iacr.org/elections/2010
4https://github.com/benadida/helios-server
5http://documentation.heliosvoting.org

https://princeton.heliosvoting.org
https://www.iacr.org/elections/2010
https://github.com/benadida/helios-server
http://documentation.heliosvoting.org


encrypted ballot as a privacy-preserving receipt, which they
may refer to later during the cryptographic election verifi-
cation phase.

Homomorphic Tally. When the election is complete, elec-
tion officials produce the tally by homomorphically summing
the ciphertexts cast for the respective candidates. For ex-
ample, they would homomorphically sum all ‘Alice’ cipher-
texts, decrypt the result, and issue a zero-knowledge proof
that the decryption was correct. They would then repeat
this for Bob. These vote totals, along with all encrypted
ballots and all associated proofs are posted to a public bul-
letin board.

End-to-end Verification. The election can now be ver-
ified for correctness. The end-to-end nature of verification
arises from the fact that each voter can:

1. Check their encrypted ballot was included in the col-
lection of encrypted ballots,

2. Verify the zero-knowledge proofs of correctness in the
collection of encrypted ballots,

3. Homomorphically re-compute the encrypted tally,

4. Verify the zero-knowledge proof of decryption and com-
pare it to the reported outcome.

Recalling the goals of cryptographic end-to-end verification,
the first check allows the voter to confirm the inclusion of
their vote in the overall tally (Helios provides a verification
step prior to ballot submission that allows the voter to verify
their choices were correctly encrypted). Finally, the second,
third and fourth checks allow anyone to confirm the tally
was counted and decrypted correctly.

2.3 Threat Model and Assumptions
Helios does not attempt (nor claim) to protect against cer-
tain threats, such as over-the-shoulder coercion resistance,
and client-side malware [3]. For the purposes of the attacks
presented in this paper we attempt to provide a set of as-
sumptions that fairly capture aspects of the threat model:

• Semantic Security. Bernhard et al. [8] demonstrated
that Helios is non-malleable under chosen plaintext at-
tack (NM-CPA), and by implication indistinguishable
under chosen plaintext attack (IND-CPA). It should be
computationally infeasible, therefore, for an adversary
to guess how a voter voted with advantage based solely
on the public audit trail.

• Semi-Trusted Election Authority. In this paper
we do not consider attacks in which a malicious elec-
tion authority attempts to recover voting preferences
from encrypted ballots—this capability is assumed. Al-
though Helios does in principle support multiple trus-
tees with distributed decryption, the default and most
common configuration is a single-trustee mode in which
the Helios server has a copy of the election private key.

• Completeness and Soundness. Helios produces
various non-interactive zero-knowledge proofs for the
purposes of proving (a) a ballot is correctly formed,
e.g., doesn’t contain multiple votes, negative votes,
etc., and (b) the election trustees decrypted the homo-
morphic tally correctly. We say a proof is accepting if a
verification algorithm returns True, and non-accepting

otherwise. We assume the Helios proofs are both com-
plete, meaning (informally) that a verifier will accept
valid proofs, and sound meaning a verifier will reject
invalid proofs.

• Election as a Service. We analyze Helios from the
perspective of an election-as-a-service meaning we don’t
consider exploits that could be achieved by altering the
server-side code or by otherwise assuming the Helios
service acts maliciously.

3. PRELIMINARIES
Let Gq denote a finite cyclic group of order q in which the

discrete logarithm problem is assumed to be hard. Helios
implements Gq over a finite field (as opposed to an elliptic
curve), thus for the purposes of this paper let p, q be primes
for which q | (p − 1)/2, and Gq subgroup of Z∗p. Current
NIST guidelines require |p| ≥ 2048 bits and |q| ≥ 224 bits,
corresponding to the 112-bit security level [28]. Let x←$ Zq

denote a value x sampled uniformly from the set of integers
modulo q. Values 〈a, b, c〉 ∈ Gq forms a Diffie-Hellman tuple
if 〈a, b, c〉 = 〈gx, gy, gxy〉 for some integers x, y ∈ Zq.

Let 〈Gen,Enc,Dec〉 by a public-key encryption scheme.
Helios uses the exponential variant of Elgamal:

Gen(1s) → g, y ∈ Gq for y = gx, x ∈$ Zq

Enc(m) = 〈gr, gmyr〉 for r ∈$ Zq

= 〈α, β〉

Dec(〈α, β〉) = (α)−xβ

= (gr)−xgm+xr

= gm.

In El Gamal’s original description, a plaintext is encoded
directly as an element in m ∈ Gq, and β = myr. Here
instead we encode the message as an exponent of g, i.e.,
β = gmyr. As a downside, m must be recovered from gm by
computing the discrete logarithm, although this reasonably
efficient whenm is small. This provides us with the following
additive homomorphism:

Enc(a) · Enc(b) = 〈gragrb , ga+xragb+xrb〉

= 〈gr
′
, ga+b+xr′〉

= Enc(a+ b).

Helios uses this additive property to implement a homomor-
phic counter construction in which encrypted ballots can be
homomorphically tallied by computing the product of their
respective ciphertexts. Observe Enc(0) = 〈gr, grx〉, taken
along with public key gx form a DH tuple. Similarly if
one were to claim 〈α, β〉 = Enc(m), then 〈α, β/gm〉 likewise
forms a DH tuple. Helios makes extensive use of proofs of
DH tuples due to Chaum and Pedersen [14], which use the
standard three move commit-challenge-response flow. The
proof is made non-interactive by the heuristic due to Fiat
and Shamir [23]. To provide soundness, the Fiat-Shamir
heuristic generates the challenge value by hashing a context,
which typically would include the proof’s inputs, and ideally
information about the statement being proven. Bernhard et
al. [8] suggest how best to select an appropriate context for
Helios. Given two Boolean statements S1, S2 a logical dis-
junction of the form S1 ∨ S2 is accomplished following the



strategy of Cramer et al. [17] in which one proof is real, and
the other is simulated, where the proof is executed out of
the usual order, allowing the prover to pick the challenge
before making the commitment, thereby allowing them fake
the proof.

The Fiat-Shamir heuristic is used to generate an overall
challenge coverall, and prover can be forced to produce at least
one real challenge creal by the verifier enforcing:

creal + csim = coverall.

The Helios Ballot.
Without loss of generality consider a contest between two

candidates, Alice and Bob. The voter is allowed to vote for
up to one candidate i.e., may vote for either Alice, Bob, or
neither (i.e., abstain). Helios uses a homomorphic counter
approach in which the voting preference, v ∈ {0, 1}, is en-
crypted separately for each candidate. To indicate a vote
for Alice, the voter set EncAlice = Enc(1), otherwise the voter
would set EncAlice = Enc(0). Let EncAlice and EncBob be en-
cryptions of votes for Alice and Bob respectively. The voter
then issues three disjunctive non-interactive proofs that the
encryptions are well formed, i.e.,

• π1 =
(
EncAlice = Enc(0)

)
∨
(
EncAlice = Enc(1)

)
• π2 =

(
EncBob = Enc(0)

)
∨
(
EncBob = Enc(1)

)
• π3 =

(
EncAlice · EncBob = Enc(0)

)
∨(

EncAlice · EncBob = Enc(1)
)

The Helios ballot is the tuple 〈EncAlice,EncBob, π1, π2, π3〉.
To homomorphically tally the votes for each candidate,

the election officials multiply the respective ciphertests. Sup-
pose EnciAlice = Enc(v1), . . . ,EncnAlice = Enc(vn) are all the
encrypted Alice votes received during the election. Alice’s
vote total is homomorphically tallied as:

n∏
i=1

EnciAlice = Enc
( n∑

i=1

vi
)
.

The same process is used to homomorphcally tally Bob’s
votes. Each counter is decrypted and, of course, the candi-
date with the greatest number of votes wins.

4. CRYPTOGRAPHIC ATTACKS
Recall that Helios works in the cyclic group Gq and as-

sumes the discrete logarithm problem is hard. This assump-
tion not only typically requires q to be large and prime, but
that any group elements are in Gq. Unlike a safe prime
group in which almost exactly half the values in the range
2 . . . p − 1 are in a group of order q, Helios uses a 256-bit
subgroup of a 2048-bit group Z∗p. The probability a random
element is in Gq, therefore, is:

P (x ∈ Gq|x ∈$ Z∗p) =
1

21792

This would seem to provide a lot of opportunity for a klepto-
graphic channel, such as a voter trying to encode additional
information into another subgroup of their ballot ciphertext.
This is where the correctness proofs come into play. All
things considered, they do a good job of detecting problems
within the confines of Gq.

As we discovered, however, Helios does not check the un-
derlying assumptions about the group, or element member-
ship in the group, which allowed us to construct the following
attacks.

4.1 Poison Ballot Attack
In this attack a disgruntled voter wishes to disrupt the

election by preventing the tally from being computed by
submitting a maliciously formed “poison” ballot. Normally
a voter encrypts their preference for each candidate and con-
structs the associated proofs. Suppose the voter wishes to
vote for Alice. An honest voting client would compute the
following encryption:

EncAlice(1) = 〈gr, g1+rx〉 (1)

Suppose the homomorphic tally of votes for Alice is a cipher-
text 〈αs, βs〉. As the first step of decryption, the election
official would compute αx

s = (grs)x, and prove the correct-
ness by proving 〈g, αs, y, α

x
s 〉 forms a DH tuple. An attacker,

however, could cause this proof to fail by intentionally forc-
ing the tuple to not be a DH tuple. The only degree of
freedom the voter has is their encrypted ballot, which is
protected by the proof of correctness.

Exploit. The idea here is to select a generator h of a sub-
group of order k such that k|p− 1. The Helios prime p pro-
vides us with with a number of subgroups to choose from,
but for efficiency we selected h to have order k = 2. The
malicious voter then computes the encryption:

EncAlice
′(1) = 〈hgr, g1+rx〉 (2)

The next problem to malicious voter must overcome is the
proof of correctness. As shown in Figure 1 it must be the
case that

grreal
?
= (gr)crealA

but instead we have

grreal
?
= (hgr)crealA

But if we were to have a situation in which creal ≡ 0 mod k,
then hcreal ≡ 1 mod p, meaning the h term effectively dis-
appears. In the simulated proof the attacker can directly
cause csim to have this property. The attacker then checks
if creal ≡ 0 mod k. If so they proceed, otherwise they rewind
the proof and try again. Following the same strategy they
must also ensure that the h term disappears in the sum-
mation proof. With a valid-looking proof complete, the
voter submits the poisoned ballot and waits. Once again
let the homomorphic sum be 〈αs, βs〉. The election official
now computes αx

s = (hgrs)x. If x 6≡ 0 mod k then it is easy
to see

〈g, αs, y, α
x
s 〉 = 〈g, hgrs , hgxrsgx〉,

which is clearly not a DH tuple, meaning the verification of
the decryption proof will fail. If x ≡ 0 mod k, however, then
the h term will disappear as it did in the proofs, and the de-
cryption will verify. This happens with probability 1/k, and
thus k can be adjusted to make the desired outcome as likely
as possible depending on the subgroup options of p.

Impact and Mitigation. We implemented the attack and
confirmed it would prevent the tally from being decrypted.
The impact is high since any eligible voter can perform this



Simulated proof of DH tuple for 〈g, gr, gx, grx〉

Prover Verifier

csim, rsim, w←$Zq

A = grsim (gr)−w

B = (gx)rsim (grx)−w

csim, rsim, A,B

grsim
?
= (gr)csimA

(gx)rsim
?
= (grx)csimB

Real proof of DH tuple for 〈g, gr, gx, grx〉

Prover Verifier

w←$Zq

A = gw

B = (gr)w

creal = coverall − csim mod q

rreal = crealr + w mod q

creal, rreal, A,B

grreal
?
= (gr)crealA

(gx)rreal
?
= (grx)crealB

Figure 1: Disjunctive non-interactive proofs of DH tuple.

attack from the voting client. We worked with the Helios
designers to ensure that the server checks all relevant pa-
rameters are in Gq before checking the proof.

4.2 Rigging an Election & Proving You Didn’t
In this attack a malicious election authority seeks to rig

an election, i.e., alter the vote totals to an arbitrary re-
sult.Nominally Helios prevents this by requiring (a) all bal-
lots included in the homomorphic tally have accepting proofs
of correctness, and (b) the decryption of the homomorphic
tally has an accepting proof of correctness. Universal veri-
fiability arises from the fact that anyone in the public can
run the proof verification and re-compute the homomorphic
tally. Although we assume the election trustee has the abil-
ity to decrypt any individual ballot, they nominally do not
have the ability to break the soundness of the proofs.

This attack is stronger than the conventional notion of
ballot stuffing since in the case it is possible not only to add
spurious votes, but subtract them as well!

Exploit. Initially we considered attacking the decryption
proof, but in our single-trustee model, decryption occurs
on the Helios server itself. As an alternative to maliciously
modifying server code (which is outside our threat model),
we considered the possibility of the election official submit-
ting a maliciously constructed ballot instead. We believe
this is a plausible scenario since often election officials are
themselves voters in an election.

First the malicious trustee begins by creating a set of cus-
tom domain parameters 〈p, q, g, y, x〉 in which the expected

properties still apply |p| = 2048, q|p − 1, g, y ∈ Gq and
y = gx. The only exception is we select q, and hence |Gq| to
be as small as possible while still being able to accommodate
the ballots of all potential voters. The default choice of p
could be used to create a homomorphic counters that could
accommodate up to around 16-million votes since,

p− 1 = 2 · 32 · 5 · 13 · 23 · 647 ·
(
256-bit factor

)
· . . .

This would be large enough to conduct an election in all but
the largest cities on Earth, and even then we could reason-
ably expect homomorphic counters would be divided into
smaller regions. The malicious election trustee constructs
these purposefully weak parameters and uploads in a JSON
file to the Helios server using built-in parameter upload page.

Similar to the poison ballot attack, the trustee will at-
tempt to cherry-pick challenge values to achieve their goal
of submitting an arbitrary ballot with a valid proof. As an
added bonus, because we’re working in a small group, the
trustee can decrypt the intermediate homomorphic sum of
the other ballots in order to know what to encrypt to achieve
the desired election result. Suppose we have an election with
two voters: a honest voter, and the malicious trustee. Sup-
pose the honest voter casts a vote for Alice:

〈EncAlice = Enc(1),EncBob = Enc(0)〉.

But suppose the trustee wants Bob to win. If the trustee
simply casts a vote for Bob, then the result will be a tie.
Instead the trustee will cast two votes for Bob, and minus
one vote for Alice:

〈EncAlice = Enc(−1),EncBob = Enc(2)〉



such that the homomorphic tally will have the desired out-
come of a landslide victory for Bob:

〈EncAlice = Enc(1− 1 = 0),EncBob = Enc(0 + 2 = 2)〉.

But the trustee is on the hook now to produce accepting
proofs of correctness. Recall for each candidate, as well as
the combined sum, this involves proving a ciphertext is ei-
ther Enc(0) or Enc(1). If Enc(m) for m 6= 0 and m 6= 1
the proof will nominally fail. Recall from Figure 1 that the
verifier confirms a DH tuple by checking

(gx)r
?
= (grx)cB.

Instead we have

(gx)r
?
= (gm+rx)cB.

and the equality does not hold. If, however, the trustee
could select a challenge c ≡ 0 mod q then we have

resp = cr + w mod q

= w mod q

and therefore

(gx)resp
?
= (gm+rx)cB

(gx)w
?
= (gcm+crx)(gx)w

gxw = gxw.

Thus verification success, independent of the value of the
homomorphic counter Enc(m). The trustee must then en-
sure that all 6 real and simulated challenges are 0 mod q.
Once again the simulated challenges can be directly chosen
to have this property. The real challenges, being essentially
a random value in Zq, will have this property with proba-
bility P = 1

q
. All 3 real challenges (Alice, Bob, Sum) will

simultaneously have this property with probability P = 1
q3

.

Once again the trustee attempts to generate such challenges,
rewinding if any real challenge does not meet the criteria and
trying again until successful. Figure 2 shows a screenshot of
our ballot stealing attack.

Impact and Mitigation. We implemented the attack and
confirmed we could produce arbitrary election tallies with
accepting proofs. The impact is severe since a malicious
election official can not only (a) completely bypass the cryp-
tographic protections of the cryptographic audit to produce
whatever result they wish, but can also (b) produce an ac-
cepting proof that the tally was correct. It might rightly be
pointed that this could be mitigated by independent parties
writing their own implementations of the verification proto-
col. We are presently aware of only one such independent
implementation for Helios verification, and did not find ev-
idence that it would catch this attack.6 Again we worked
with the Helios designers to ensure that the domain param-
eters p, q implement a cyclic group Gq of large prime order,
and that g, y ∈ Gq.

5. ATTACKS ON BALLOT SECRECY
We demonstrate the random number generator (RNG)

used in the Helios client-side voting booth exhibits a bias,
allowing an attacker to distinguish between real and simu-
lated votes with non-negligible advantage. This breaks the

6https://github.com/google/pyrios

Figure 2: Screen capture of a rigged Helios election.
One ballot contained a vote for Option A. Another
ballot contained two votes for Option B, and -1 votes
for Option A.

formal security notion of ciphertext indistinguishably in He-
lios, and appears to affect all past elections. Based on the
particular group parameters chosen by the Helios designers,
an attacker observing only the public cryptographic audit
trail can correctly guess how a voter voted approximately
53% of the time in a two-candidate race. Depending on the
group parameters used, we show the attacker can be suc-
cessful up to 67% of the time. We show the attacker has
negligible advantage when safe-prime groups are used. In-
terestingly, however, we discovered that if safe-prime groups
were used in Helios, a separate implementation flaw in the
RNG would reveal ballot selections with overwhelming prob-
ability.

5.1 Helios RNG Bias
Like other cryptographic implementations (such as TLS),

random-number generators (RNGs) and pseudo-random num-
ber generators (PRNGs) are critical components not only for
privacy, but also integrity and authenticity. Although RNGs
and PRNGs are fundamentally different beasts, in practice
RNGs are often implemented as a hybrid: entropy is col-
lected, extracted, and run through a PRNG to boost the
output length, and clean up any unanticipated deviations
from the intended output distribution. For simplicity we
simply refer to the hybrid case as an RNG. Helios uses ran-
dom number generation for a variety of cryptographic pur-
poses: random factors for Elgamal encryption, trustee pri-
vate keys, commitment exponents, and as a challenge value
in the proof of DH tuple.

Let R be an RNG that accepts a value q and returns a
random value in the range [0, q − 1]. We define the bias
0 ≤ b < 1

2
of R as follows:

P

[
R(q) ≤

⌊ q
2

⌋]
=

1

2
+ b.

Suppose x ← R(q), and y = gx mod p. A small bias in
R(q) (e.g., b = 0.01) may be acceptable in this setting; the

https://github.com/google/pyrios


effective search space is still on the order of 2q, and the
element y is still statistically uniform in Z∗p.

The raw output of R, however, shows up in the crypto-
graphic audit trail of Helios. Of particular interest here are
the challenge values of the disjunctive proofs. The simulated
challenge csim is directly sampled from R. By contrast the
real challenge creal is computed as:

creal = coverall − csim mod q.

The Helios client-side RNG is written in Javascript (See
Listing 1). It accepts a max value max and returns a ran-
dom value in the range [0,max). First it computes the
bit-length the of max: ` = |max|. It then calls a func-
tion to receive `

32
random 32-bit words. Specifically it calls

sjcl.random.randomWords(), part of the Stanford Javascript
Crypto Library (SJCL).7 SJCL implements a variant of the
Fortuna pseudo-random number generator [22]. Briefly, it
collects entropy from a number of sources in the client (e.g.,
mouse position), hashes them, and uses the result as the key
in AES-CTR.
sjcl.random.randomWords() returns a value in the range

[0, 2|max|). To coerce this to a value in the range [0,max),
Helios returns the value modulo max, thus introducing a
modulo bias.

Random.getRandomInteger = function(max) {
var bit length = max.bitLength();
Random.setupGenerator();
var random =

sjcl.random.randomWords(bit length / 32, 0);
var rand bi =

new BigInt(sjcl.codec.hex.fromBits(random), 16);
return rand bi.mod(max);

};

Listing 1: Helios Voting Booth PRNG

5.2 Modulo Bias
We now analyze the bias of the Helios RNG. The RNG is

idealized as follows:

Rmb(q)

` = dlog2(q)e
a←$ [0, 2`)

return a mod q

Define event e to be the outcome when Rmb(q) returns a
value that is less than q

2
. This outcome arises from two pos-

sible events. Define event e1 to be the event when a ∈ [0, q
2
).

Rmb will return a directly. Let let us define another event,
e2 to be the case where a ∈ [q, 2`). Here Rmb will apply
the modulo reduction, producing a result that is strictly less
than q

2
(for any `-bit q). As e1 and e2 are mutually exclu-

sive, we have P (e) = e1 + e2. We expect to see outputs less
than q

2
more than half the time. Let us now compute the

probability of receiving a value from Rmb that is less than
q
2
.

Theorem 1. The probability that Rmb(q) produces a value
less than q

2
is:

P

[
Rmb(q) <

q

2

]
=

{
q

2`
q ≤ 2

3
· 2`

1− q

2`+1 otherwise
(3)

7https://crypto.stanford.edu/sjcl/

Proof. Assuming that a is sampled uniformly,

P
(
e1
)

=
q

2
· 1

2q
=

q

2`+1
,

P
(
e2
)

= (2` − q) · 1

2`
= 1− q

2`
.

There are now three cases to consider.
Case 1. P (e1) = P (e2). Then we have

P (e) = 2 · q

2`+1

=
q

2`
.

Case 2. P (e1) > P (e2). Then we have

P (e) = P (e1) + P (e2)

=
q

2`+1
+ 1− q

2`

= 1− q

2`+1
.

Case 3. P (e1) < P (e2). This implies P (e2) > q

2`+1 which

implies P (e) > q

2`
, which implies q > 2`, which is false by

definition.

Helios uses a custom generated algebraic group. The prime
modulus p is 2048 bits, with a generator of a 256-bit group
order q where

log2(q) = 255.0831..

which is fortuitously is fairly far off the optimal biased value
of |q| = 255.4150. Applying q to Equation (3), however, we
find:

P

[
Rmb(q) <

q

2

]
≈ 0.53.

In other words, the Helios RNG will return a value less than
q
2

approximately 53% of the time.

5.3 Distinguishing Ballots in Helios
Here we show the modulo bias can be used to guess how a

voter voted from the cryptographic audit trail with advan-
tage (i.e., better than random). For space we examine the
2-candidate race scenario. First recall that an encrypted bal-
lot with 3 disjunctive proofs, i.e., each candidate was voted
for 0 or 1 times, and the total number of votes was 0 or
1. This consists of 2 · 3 = 6 Chaum-Pedersen proofs of DH
tuple. Let the challenge values for each of the proofs respec-
tively be: cAlice=0, cAlice=1, cBob=0, cBob=1, cSum=0, cSum=1. We
now give a strategy for distinguishing ballots:

https://crypto.stanford.edu/sjcl/


Ballot Distinguisher Strategy

in Challenges: cAlice=0, cAlice=1, cBob=0, cBob=1

if

(
(cAlice=0 < cAlice=1)AND (cBob=0 > cBob=1)

)
return Guess vote for Alice

elseif

(
(cAlice=0 > cAlice=1)AND (cBob=0 < cBob=1)

)
return Guess vote for Bob

else

return Random guess

Theorem 2. (A’s advantage) Using the strategy given
above, for an RNG with bias b, an adversary can correctly
guess the encrypted ballot with probability 1

2
+ b.

Proof. First notice the simulated challenges are gen-
erated by the RNG, P (csim < q

2
) = 1

2
+ b, and recall

csim + creal = coverall mod q. Helios uses SHA1 to produce
coverall, which has a 160-bit output. Given the size of q rel-
ative to this length (256-bits), we have csim+creal = s mod q
for a small s. This means that when csim <

q
2
, the real chal-

lenge will be creal >
q
2
, and vice versa.

In the presence of a bias we expect csim < creal. So if
we examine the challenges in the Alice proof and we find
cAlice=0 < cAlice=1, we would expect cAlice=0 is simulated and
cAlice=1, thereby indicating a vote for Alice. If our guess is
correct, then in the Bob proof we would expect the opposite,
cBob=0 > cBob=1. Let us define two outcomes: a consistent
outcome is when the challenges are consistent with our ex-
pectation that the vote implied by the challenges in the Alice
proof will similarly imply the opposite outcome in the Bob
proof. We call an outcome inconsistent when the challenges
do not meet this expectation. Let p be the probability that
the simulated challenge is less than the real challenge. There
are now three cases:

1. Case 1. Consistent challenges, and expectation
is correct: If the result is consistent, then the proba-
bility that both simulated challenges are less than their
corresponding real challenges is p2.

2. Case 2. Consistent challenges, and expectation
is incorrect: If the result is consistent, then the prob-
ability that both simulated challenges are greater than
their corresponding real challenges is (1− p)2

3. Case 3. Inconsistent challenges: If the result is in-
consistent, then one simulated challenge was less than
its real challenge, and one was greater. The probability
of this is 2p(p− 1).

The overall probability of being correct is

P (A guesses correctly) = p2 + p(1− p)
= p.

Using this strategy in Helios where p = 0.53, an adversary
can correctly guess how a voter voted with probability P =
0.53. If q had been chosen to be optimally ‘bad’, i.e., 2

3
2257,

this probability would grow as high as P = 0.67. Finally,
if q were chosen optimally close to a power of 2, e.g., if
prime modulus |p| = 2048 bits and q = p−1

2
, the attackers

advantage would be negligible.

5.4 Attacks on Custom DL Parameters
Helios uses its own custom DL parameters. Recently at-

tacks like Logjam [5] have suggested that election officials
may wish to use their own parameters. One common choice
is to use a safe-prime group, i.e., one for which p = 2q + 1.
Safe prime groups, for example, account for the majority
of DHE parameters used in TLS. Another more severe bias
could manifest if the default group parameters were changed.
If election officials were to use a safe prime group, we show
that ballot secrecy would be compromised in the public au-
dit.

Recalling that the RNG computes bit length of q. When
the call gets made to the SJCL’s randomWords function, it
passes in an integer representing how many 32-bit words
should be returned:

random = sjcl.random.randomWords(bit_length/32,0);

A problem arises when the bit-length of q is not a multiple
of 32. The number of words that get returned is:

#words to generate =

⌊
bit_length

32

⌋
but the intended result should be

#words to generate =

⌈
bit_length

32

⌉
.

What this means is if the bit length of q is not a multiple
of 32 such as in a safe prime group where |q| = |p| − 1, then
we have

P

[
Rmb(q) <

q

2

]
= 1, (4)

thus,

P [csim < creal] = 1 (5)

and finally,

P (Attacker guesses correctly) = 1. (6)

In the case of a safe prime group with a 2048-bit prime
modulus p, the bit length of q is 2047, Instead of the RNG
returning 64 words (as expected), it would return 63 words.
Because the real and simulated challenges sum to a small
value modulo q, the simulated challenge will be appear sig-
nificantly smaller than the real challenge (see Figure 3) al-
lowing real and simulated votes to be distinguished with
certainty.

c_real = 245795995731172176399106422508828365024266
502426605057147905095769434705548946068102

c_sim = 221342783966220711424501628534989515038736
9592630583966797298269577

Figure 3: Illustration of length difference between
a real challenge (top) and simulated challenge (bot-
tom) when using Helios with a safe prime group.

Impact and Mitigation. To the best of our knowledge
all past Helios elections (totally approximately 500,000 cast
ballots) used the biased client-side RNG with the default
parameters. In practical terms the threat to voters in past



elections is low. The significance of the vulnerability is two-
fold: (1) it breaks the formal security guarantees of He-
lios as proven in [8]. Although the Helios protocol is non-
malleable under chosen-plaintext attack, we have shown that
in the Helios implementation, ballots are distinguishable un-
der eavesdropping, thus breaking the most basic formal no-
tion of privacy. (2) The other more serious risk is to future
election officials who use their own custom parameters and
either experience a much larger bias, potentially and inad-
vertently revealing the voting preferences of all voters on a
public website.

The textbook fix is to not use a modulo reduction to bring
large values inside the desired range, but rather loop the
RNG until it produces a value less than q. But this ap-
proach consumes more entropy than it strictly needs, so in-
stead we used the “simple modular method” for converting
random bits to a random integer in the range [0..max − 1]
as described by NIST[6]. In this approach, given a max,
and a security parameter s, the random bit generator gen-
erates |max|+ s (or more) bits. The resulting bits are then
returned modulo max. Because the bit value is likely much
larger than max, the modulo bias is similarly negligible. We
corrected the RNG code using the NIST recommended value
of s = 64.

6. WEB ATTACKS

6.1 Cross-site Scripting (XSS) Attacks
Cross-site scripting attacks (XSS) are a type of code injec-

tion attack where malicious code is injected into a website
and then executed on a victim’s machine. The malicious
code often takes the form of a JavaScript element embed-
ded in the Document Object Model (DOM). They can be
difficult to completely eliminate, and may be leveraged to
perform a wide range of actions on the user’s behalf.

Prevention of XSS attacks generally involve sanitizing any
user input by encoding scripting characters to be displayed
as plain text. There is not, however, a universal solution
to the problem. How user data is escaped largely depends
on the context in which it will eventually be used which
varies between applications. For example, user input that
will be displayed as a paragraph element has different es-
cape requirements than user input that will be assigned to
a JavaScript variable. We encountered a small oversight in
the Helios code that would allow an XSS attack to be per-
formed on a voter’s device. In this section we describe an
attack that would allow a remote attacker to cast a ballot
on a voter’s behalf, and further display the ballot had been
cast as intended. Note this differs from our threat model al-
lowing client-side malware, exploiting instead the trust the
voter’s browser places in Helios.

6.2 XSS Vulnerability
As previously mentioned, how input will eventually be dis-

played affects how it should be escaped. The vulnerability
in Helios is caused by the use of HTML escaping on data
that is used in a JavaScript context. This happens on the
“Questions” page of an election where any user, registered
or not, can view the questions and candidates of an election.
These questions and candidates are specified by the admin-
istrator(s) of the election, and elections can be created by
anyone with a Google or Facebook account.

Creating an Election. The steps for creating a Helios
election are relatively simple:

1. Log in with Facebook or Google account,

2. Provide an election name and description,

3. Add ballot questions and answers,

4. Provide a list of approved voters, or allow any regis-
tered user to vote,

5. Freeze the ballot (i.e., prevent future changes) thereby
opening voting phase.

After questions are added, they are serialized into JSON
and stored in the Helios database. The only apparent char-

acter that is escaped is the double quote marks ()̈. When it
comes time to serve this content to users viewing the ques-
tions page, this JSON object is retrieved from the database
and parsed by Django to build the requested pages. In
election_questions.html the JSON object is assigned to
the QUESTIONS variable as

QUESTIONS = {{questions_json|safe}} .

The double-brace notation informs Django that a variable
is contained within and will eventually replace the variable
name with its value. The pipe operator informs Django that
the variable is to be passed through a filter. Filters are func-
tions that modify variables before displaying them. In the
previously mentioned code, the variable, questions_json, is
passed through the safe filter. The safe filter informs Django
that the variable passed into it requires no further HTML
escaping and that it is safe for display.

The consequence is whatever an election administrator
provides as a question is not escaped when displayed to other
users. This is likely because HTML escaping a JSON struc-
ture results in a structure that cannot be used in JavaScript,
but this also creates a perfect opportunity to perform an XSS
attack.

Exploit. We were able to cast ballots in an election on
behalf of registered voters by taking advantage of Helios’s
recast feature where Helios allows for the re-casting of ballots
and only counts the most recently cast ballot.

To perform the attack, assume we have three parties: Al-
ice, an honest election administrator; Bob, an honest voter;
and Charlie, a remote attacker. Alice creates an election
with a single question and two candidates, “Kang” and “Ko-
dos” with open registration (i.e., any Helios user can vote)
and promotes the election through the relevant channels.
Alice and Bob cast their ballots through the normal process
and coincidentally both vote for Kang, while Charlie casts
his ballot for Kodos and wants to ensure that Bob does the
same.

To do this, Charlie creates two elections: a malicious elec-
tion with a ballot question containing a <script> tag link-
ing to an externally hosted attack script, and another decoy
election for“Favorite Soda”. The malicious question exploits
the XSS vulnerability can then take the form:

<script src=example.com/vote-stealer.js></script>

Charlie then sends Bob and others an email containing a
link to the malicious election asking them to view his “Fa-
vorite Soda” election. While this would execute the script,
the user wouldn’t necessarily be logged for the cast ballot
to be accepted. To get around this, Charlie sends a link



to the Google OAuth endpoint with the return parameter
set to the malicious election. The victim doesn’t necessar-
ily detect anything unusual since the URL still points to
heliosvoting.org. An example link would be of the form:

https://vote.heliosvoting.org/auth/?return_url=
/helios/elections/c0e6fec8 ... d9/questions

Users clicking on the link will first be presented with the
Google login screen for Helios. After entering their creden-
tials, the user will be redirected to the page containing the
XSS payload.

We constructed an XSS payload and hosted it on a re-
mote server. It begins by extracting a user-specific CSRF
token from the page. Because the CSRF token is the same
across all elections for the authenticated user, it is sufficient
to take the CSRF token from the malicious election page and
use it in other elections. In the attack, the ballot variable
is hardcoded but it could be arranged such that code from
the helios-booth is used to generate ballots at runtime, al-
though, in the interest of time, it would make more sense for
the attacker to pre-generate ballots and include a new one
each time the script is called. The script then builds a POST
request containing the ballot and CSRF token and sends it
to the Helios endpoint for Alice’s election. At this point,
the script has successfully cast a ballot in Alice’s election
from Bob’s browser via the malicious election page. Upon
successful completion of the POST request, the success call-
back is executed and the user is redirected to the “Favorite
Soda” election.

From the user’s point of view, they started by having to
log in to Helios and were then redirected to the “Favorite
Soda” election. The only evidence that a malicious action
has taken place is the email confirmation for casting a bal-
lot in Helios. Although this may alert the voter of unusual
activity, Mohr et al. [27] recently suggested that even if vot-
ers suspect something went wrong, they may more likely
attribute it to a fault or misunderstanding in their own ac-
tion. From Helios’s point of view, the ballot was legitimately
cast and since the most recent ballot is the one tallied, Bob’s
initial vote is overwritten by the ballot specified by Charlie.

Impact and Mitigation. We implemented the attack and
were able to steal ballots from voters who clicked our ma-
licious heliosvoting.org URL. The impact of this exploit is
high, since anyone (not just eligible voters) can create a
dummy election with the vote stealing XSS. We informed
the Helios developers and they released a fix of the XSS vul-
nerability.

Related Attacks. A similar XSS vulnerability in the He-
lios “Questions” page was discovered in a 2011 paper by Hei-
derich et al. [24] caused by a lack of context-sensitive filter-
ing. Heiderich is also credited on the Helios page with the
disclosure8 of a different XSS vulnerability from the paper
resulting in a fix. Our work extends theirs by successfully
demonstrating a complete exploit of this vulnerability and
identifying the responsible code finally resulting in its fix.

7. DISCUSSION
Criticism of the E2E verification paradigm has often fo-

cused on practical issues such as poor usability design [2, 1],

8http://documentation.heliosvoting.org/attacks-and-defenses

cognitive dissonance associated with encountering a verifi-
cation error [27], or a high pedagogical bar to understand-
ing the cryptography.9 We believe the results of this paper
point to another avenue for consideration: The risk intro-
duced by the cryptographic audit trail itself. The benefit of
E2E over conventional voting systems is that it ultimately
focuses on verifying elections, not the software or voting ma-
chines themselves. In some sense, however, this pushes back
the problem: who verifies the verifiers?

1. Privacy Risk. The public cryptographic audit trail
creates a tension between the ability to detect fraud
and preservation of voter privacy: if you take an at-
tacked transcript down early, it limits exposure of fu-
ture privacy vulnerability discoveries (e.g., the Helios
RNG), and the expense of the public record, not to
mention election integrity (e.g., weak group parame-
ters).

2. Integrity Risks. Ultimately E2E elections are mak-
ing an assertion about the election results and osten-
sibly supporting it with evidence. But we also must
consider the potential threat of a rigged election with
a valid-looking proof. Such a situation might make
matters doubly bad: not only must the election results
be disavowed, but the proof must as well.

The U.S Vote Foundation report recommends that“any pub-
lic elections conducted over the Internet must be end-to-end
verifiable” [20]. For the most part we would agree. But as we
feel this case study has demonstrated, it may not be appro-
priate for all situations. At very least a conversation needs
to happen regarding the potential risks to privacy and in-
tegrity that an E2E scheme potentially introduces relative to
a conventional scheme, and it be weighed against the bene-
fits. Surely E2E is worse than a conventional“less-verifiable”
election if it is used as a tool to convince people of the ve-
racity of a malicious election result using an unsound proof.

Conclusion
In this paper we conducted a security analysis of Helios,
an E2E-verifiable internet voting system. We discovered a
range of serious vulnerabilities attacking confidentiality, in-
tegrity and availability. We presented the technical details
of the vulnerabilities and worked with the Helios design-
ers to fix them. Unlike conventional elections, the public
nature of the cryptographic audit introduces new risks to
ballot secrecy and election integrity that have still not been
fully explored, but hopefully will become a point for further
debate over the future role of E2E-verification.
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