SE 4472
Information Security

Digital Signatures and RSA

Prof. Aleksander Essex Western .
¥ KEngineering

Digital Signatures

A way to bind a message to a public key

Two keys:

» A private signing key
» A public verification key

Only the holder of the private signing key can generate valid
signatures on a given message for a given public key

Anyone can check that a given signature and message IS
consistent with a given public key

Like public-key encryption, it should be hard to recover the
orivate signing key given only the public verification key

Signature Functionalities

Security
parameter

Keygen

Private signing key
Public verification key

Private
signing key

Message
in {01}

-
-

Signature

Public verification
key

Message
in {0,1}

Signature

Verification

Valid / Invalid

Signature workflow

=
® ¢
d.b

Valid!
Message
Alice's Message
signing > o
& Message
Signature
Signature

D Signature

" Alice’'s
. verification

key

Eve modifies message

-
W ¢

\ 4

RE

— T
Alice’s Message
signing > °
& Message
Signature
Signature
Signature

Alice’'s
verification
key

Eve modifies signature

-
W ¢

\ 4

RE

Alice’s
signing
key

— T
‘ Message

Message =

Signature 1: 7)

¥4 -

-

Alice’'s
verification
key

Real sighatures are done on hashes

\ 4

RE

Message

Hash

Alice’s
signing
key

Message

i
@

Valid!

Hash

Signature

Signature

Alice’'s
verification
key

Signatures Forgeries

 [f BEve captures Alice’s private signing key or can
recover the signing key from the verification key, she
can can create valid signatures on messages

o Forgeries are attacks creating valid signatures on a
message Without necessarily knowing the private
signing key

Signatures Forgeries

» Universal Forgery

« Ve can create a valid signature on any arbitrary message, even
those provided by a challenger

» Selective Forgery

» Eve can create a valid signature on a message she chooses ahead
of time, but not necessarily on those provided by a challenger

» Existential Forgery

» Eve can demonstrate at least one forgery, but the message may not
oe meaningful

Slgnatures with RSA

RSA

e Hrst public-key encryption scheme invented by
Rivest, Shamir and Adelman

* One of the most important developments in
cryptography

e RSA for key agreement is not widely used these
days and will be deprecated in TLS 1.3

o Still widely used in digital signatures

RSA

 Recall Fermat's Little Theorem:
~or a prime p and an integer a it is the case that:

a?~1 =1 mod p

But what if we worked modulo a composite n, 1.€.,
where n=p-p,...p."7 Euler's Theorem gives us:

q@1=)(@2—1)...(px—1) = 1 mod n

RSA

e | et n=pg for large primes p and g and let

¢=(p—1)(¢g—1)

Then as per Euler's theorem:

a® =1 mod n
VWhich means

pmod ¢ — 0 1hod n

Or In other words, exponents are computed in the
group of integers mod @

ac’bza

RSA

e SUPPOSE We choose two numbers, e and d such

that:
ed =1 mod ¢

Now we have the building blocks to create a public-
key encryption function

Textbook RSA

Public key: n, e

Private key: n, d

—Ncryption:

c = Enc(m) =m° modn
Decryption:

m = Dec(c) = c¢* mod n

Textbook RSA

Why decryption works:
m = Dec(c) = c

— m

= (m°)"

d

ed mod ¢

— T

1

mod n
mod n

mod n

mod n

Choices for e

e |Inthe early days people chose encryption exponent
to be really small, ie e=3, but there were a numler
of attacks

e \We'd like to keep e small 1o keep the public-key
operation efficient, but big enough to prevent
attacks

e =05537=2"N0b+1 Is a common choice

d Is then computed using the Euclidian algorithm as

d=e' mod &

RSA Signatures

* Here's a first pass at tuming RSA into a signature
scheme:

Private signing key: d,n
Public verification key: e,n

Sign:
4 mod n

o = Sign(m) =m
Verity:

Verify(m', o) :
e ?

¢ modn=m'

Problem with Textbook RSA sigs

e SUPPOSE You have two message/signature pairs:
(mh 01), (m2, 02)
Let:
g =— TNnq119 and 03 — 0109
Then:
(m37 03)
S a valid signature (see proof on board).
o Conclusion: Existential forgeries are easy to do!

Solution: Use padding

« RSA PKCS#1 v1.5 padding:

Padding

Signing

a—

integer

RSA Sign S signature

Veritying

Equivalent? (yes/no) *

RSA Verify ytes signature

) https://www.pinterest.com B ©

.

[

Baltimore CyberTrust Reot
Verizon Akamai SureServer CA G14-SHA2
-~ *.pinterest.com

)

L

Algorithm
Parameters

Public Key

Exponent
Key Size
Key Usage

Signature

Critical

Usage

RSA Encryption (1.2.840.113549.1.1.1) €=
none

256 bytes : C2 1C C6 B2 96 SF 7B AE FF 28 4E DO
78 AB 61 75 E2 1D 8B 8B 26 D8 AD DA FE 2F 81 AD
91 E7 E6 85 23 6C 28 AC 6E A7 5F E8 31 FO CF B8
53 OEED 5D 02 3FE6 ODSAF5 C2F6 8C F9 65 06
CO7998 73 1E7ACOS5EE7 2925F2908B6C27D
8B B5 DO AE 8E A1 6E DD 0B 90 74 E4 5A 66 OE D8
41 CE5B 31 D8 75 CO ED 85 BD 46 60 3B 62 C5 F5
0CBOO0O 81 9F03405BES5 2979 9EAS5 A1DDF8
FF7E7C91 7D 2F4F 752978 OC 3F 6B 0A 21 74
C4 5D A2 2A 07 ASES 1CED 01 OF A5 5B 13 DF 30
6F BA D5 7F 61 D6 65 AA 59 D9 OC AE C1 54 EO DF
566CF3C930165871F439D21393 2924 A4
18 BAO4 DEE3 2B AC 91 DF CO 96 2AE5 60 2A 19
46 CESFFC3CD5D4 88 1C EB 1B CD B4 BB DA 5E
37 795A28833B5ACC126EBS374B1E78 1B
65 OE38 4857 CCF38C CO75CESQ7 77 A2 3A0F
67 56 9A DS

65537
2048 bits
Encrypt, Verify, Wrap, Derive

256 bytes : AD DC 7D EA 54 40 EF 1B ...

Key Usage (2.5.29.15)
YES
Digital Signature, Key Encipherment

This says “we're using
PKCS#1 v1.5 padding”

Attacks

e Some implementations of this signature scheme did not
check the entire padding. OOPS!

» [oops over the FF's but doesn’t count them
¢ SOMme people were using e=3
» |ets tumn this Into a signature forgery attack!

e Attacker cleverly chooses the right bytes such that the
overall value I1s a power of 3.

o Aftack computes the cube root of message (notice doesn't
need the signing key!) When verifier computes the cube, the
message Is restored with the “correct” padding

