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Digital Signatures
• A way to bind a message to a public key
• Two keys:

• A private signing key
• A public verification key

• Only the holder of the private signing key can generate valid 
signatures on a given message for a given public key

• Anyone can check that a given signature and message is 
consistent with a given public key

• Like public-key encryption, it should be hard to recover the 
private signing key given only the public verification key
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Signature workflow
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Eve modifies message
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Eve modifies signature
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Real signatures are done on hashes
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Signatures Forgeries
• If Eve captures Alice’s private signing key or can 

recover the signing key from the verification key, she 
can can create valid signatures on messages

• Forgeries are attacks creating valid signatures on a 
message without necessarily knowing the private 
signing key



Signatures Forgeries
• Universal Forgery

• Eve can create a valid signature on any arbitrary message, even 
those provided by a challenger

• Selective Forgery
• Eve can create a valid signature on a message she chooses ahead 

of time, but not necessarily on those provided by a challenger

• Existential Forgery
• Eve can demonstrate at least one forgery, but the message may not 

be meaningful



Signatures with RSA



RSA
• First public-key encryption scheme invented by 

Rivest, Shamir and Adelman
• One of the most important developments in 

cryptography
• RSA for key agreement is not widely used these 

days and will be deprecated in TLS 1.3
• Still widely used in digital signatures



RSA
• Recall Fermat’s Little Theorem:

For a prime p and an integer a it is the case that:

But what if we worked modulo a composite n, i.e., 
where n=p1p2…pk? Euler’s Theorem gives us:

ap�1 ⌘ 1 mod p

a(p1�1)(p2�1)...(pk�1) ⌘ 1 mod n



RSA
• Let n=pq for large primes p and q and let

Then as per Euler’s theorem:

Which means

Or in other words, exponents are computed in the 
group of integers mod 

a� ⌘ 1 mod n

a� ⌘ a� mod � ⌘ a0 mod n

�

� = (p� 1)(q � 1)



RSA
• Suppose we choose two numbers, e and d such 

that:

Now we have the building blocks to create a public-
key encryption function

ed ⌘ 1 mod �



Textbook RSA
Public key: n, e
Private key: n, d
Encryption:

Decryption:

c = Enc(m) = me mod n

m = Dec(c) = cd mod n



Textbook RSA
Why decryption works:

m = Dec(c) = cd mod n

= (me)d mod n

= med mod � mod n

= m1 mod n

= m



Choices for e
• In the early days people chose encryption exponent 

to be really small, ie e=3, but there were a number 
of attacks

• We’d like to keep e small to keep the public-key 
operation efficient, but big enough to prevent 
attacks

• e=65537= 2^16+1 is a common choice
• d is then computed using the Euclidian algorithm as 

d = e�1 mod �



RSA Signatures
• Here’s a first pass at turning RSA into a signature 

scheme:
Private signing key: d,n
Public verification key: e,n
Sign:

Verify:

� = Sign(m) = md mod n

Verify(m0,�) :

�e mod n
?
= m0



Problem with Textbook RSA sigs

• Suppose you have two message/signature pairs:

Let:

Then:

is a valid signature (see proof on board). 
• Conclusion: Existential forgeries are easy to do!

(m1,�1), (m2,�2)

m3 = m1m2 and �3 = �1�2

(m3,�3)



Solution: Use padding
• RSA PKCS#1 v1.5 padding:

m

Hash

H(m)00  01 FF FF FF …. FF 01

Padding
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Verifying

m’

PKCS#1 
1.5

Cast to 
Bytes

RSA Verify Cast to 
bytes signature

compare

Equivalent? (yes/no)



This says “we’re using 
PKCS#1 v1.5 padding”



Attacks
• Some implementations of this signature scheme did not 

check the entire padding. OOPS!
• Loops over the FF’s but doesn’t count them

• Some people were using e=3
• Lets turn this into a signature forgery attack!

• Attacker cleverly chooses the right bytes such that the 
overall value is a power of 3.

• Attack computes the cube root of message (notice doesn’t 
need the signing key!) When verifier computes the cube, the 
message is restored with the “correct” padding

H(m)00  01 FF 01 Attacker controlled


