SE 4472 Information Security

Digital Signatures and RSA

Digital Signatures

- A way to bind a message to a public key
- Two keys:
- A private signing key
- A public verification key
- Only the holder of the private signing key can generate valid signatures on a given message for a given public key
- Anyone can check that a given signature and message is consistent with a given public key
- Like public-key encryption, it should be hard to recover the private signing key given only the public verification key

Signature Functionalities

Public verification

Signature workflow

Eve modifies message

Eve modifies signature

Real signatures are done on hashes

Signatures Forgeries

- If Eve captures Alice's private signing key or can recover the signing key from the verification key, she can can create valid signatures on messages
- Forgeries are attacks creating valid signatures on a message without necessarily knowing the private signing key

Signatures Forgeries

- Universal Forgery
- Eve can create a valid signature on any arbitrary message, even those provided by a challenger
- Selective Forgery
- Eve can create a valid signature on a message she chooses ahead of time, but not necessarily on those provided by a challenger
- Existential Forgery
- Eve can demonstrate at least one forgery, but the message may not be meaningful

Signatures with RSA

RSA

- First public-key encryption scheme invented by Rivest, Shamir and Adelman
- One of the most important developments in cryptography
- RSA for key agreement is not widely used these days and will be deprecated in TLS 1.3
- Still widely used in digital signatures

RSA

- Recall Fermat's Little Theorem:

For a prime p and an integer a it is the case that:

$$
a^{p-1} \equiv 1 \bmod p
$$

But what if we worked modulo a composite n, i.e., where $n=p_{1} p_{2} \ldots p_{k}$? Euler's Theorem gives us:

$$
a^{\left(p_{1}-1\right)\left(p_{2}-1\right) \ldots\left(p_{k}-1\right)} \equiv 1 \bmod n
$$

RSA

- Let $\mathrm{n}=\mathrm{pq}$ for large primes p and q and let

$$
\phi=(p-1)(q-1)
$$

Then as per Euler's theorem:

$$
a^{\phi} \equiv 1 \bmod n
$$

Which means

$$
a^{\phi} \equiv a^{\phi \bmod \phi} \equiv a^{0} \bmod n
$$

Or in other words, exponents are computed in the group of integers mod ϕ

RSA

- Suppose we choose two numbers, e and d such that:

$$
e d \equiv 1 \bmod \phi
$$

Now we have the building blocks to create a publickey encryption function

Textbook RSA

Public key: n, e
Private key: n, d
Encryption:

$$
c=E n c(m)=m^{e} \quad \bmod n
$$

Decryption:

$$
m=\operatorname{Dec}(c)=c^{d} \quad \bmod n
$$

Textbook RSA

Why decryption works:

$$
\begin{array}{rr}
m=\operatorname{Dec}(c)=c^{d} & \bmod n \\
=\left(m^{e}\right)^{d} & \bmod n \\
=m^{e d} \bmod \phi & \bmod n \\
=m^{1} & \bmod n \\
& =m
\end{array}
$$

Choices for e

- In the early days people chose encryption exponent to be really small, ie e=3, but there were a number of attacks
- We'd like to keep e small to keep the public-key operation efficient, but big enough to prevent attacks
- $e=65537=2^{\wedge} 16+1$ is a common choice
- d is then computed using the Euclidian algorithm as

$$
d=e^{-1} \quad \bmod \phi
$$

RSA Signatures

- Here's a first pass at turning RSA into a signature scheme:

Private signing key: d,n
Public verification key: e,n
Sign:

$$
\sigma=\operatorname{Sign}(m)=m^{d} \quad \bmod n
$$

Verify:

$$
\begin{array}{r}
\operatorname{Verify}\left(m^{\prime}, \sigma\right): \\
\sigma^{e} \quad \bmod n \stackrel{?}{=} m^{\prime}
\end{array}
$$

Problem with Textbook RSA sigs

- Suppose you have two message/signature pairs:

$$
\left(m_{1}, \sigma_{1}\right),\left(m_{2}, \sigma_{2}\right)
$$

Let:

$$
m_{3}=m_{1} m_{2} \text { and } \sigma_{3}=\sigma_{1} \sigma_{2}
$$

Then:

$$
\left(m_{3}, \sigma_{3}\right)
$$

is a valid signature (see proof on board).

- Conclusion: Existential forgeries are easy to do!

Solution: Use padding

- RSA PKCS\#1 v1.5 padding:

Signing

Verifying

Baltimore CyberTrust RootVerizon Akamai SureServer CA G14-SHA2
\llcorner
*.pinterest.com

Public Key Info

Algorithm
Parameters
Public Key none
256 bytes: C2 1C C6 B2 96 9F 7B AE FF 28 4E DO 78 A8 6175 E2 1D 8B 8B 96 D8 AD DA FE 2F 81 AD 91 E7 E6 8523 6C 28 AC 6E A7 5F E8 31 F0 CF B8 53 OE ED 5D 02 3F E6 OD 9A F5 C2 F6 8C F9 6506 C0 799873 1E 7A C0 5E E7 2925 F2 90 B6 C2 7D 8B B5 D0 AE 8E A1 6E DD 0B 9074 E4 5A 660 D8 41 CE 5B 31 D8 75 C0 ED 85 BD 4660 3B 62 C5 F5 OC B0 0081 9F 0340 5B E5 2979 9E A5 A1 DD F8 FF 7E 7C 91 7D 2F 4F 752978 0C 3F 6B 0A 2174 C4 5D A2 2A 07 A9 E9 1C ED 01 OF A5 5B 13 DF 30 6F BA D5 7F 61 D6 65 AA 59 D9 0C AE C1 54 E0 DF 56 6C F3 C9 30165871 F4 39 D2 13932924 A4 18 BA 04 DE E3 2B AC 91 DF C0 96 2A E5 60 2A 19 46 CE 9F FC 3C D5 D4 88 1C E8 1B CD B4 BB DA 5E 3779 5A 2883 3B 5A CC 12 6E B9 37 4B 1E 78 1B 65 OE 384857 CC F3 8C CO 75 CE 9777 A2 3A OF 6756 9A D9
Exponent
Key Size
Key Usage

Signature
256 bytes : AD DC 7D EA 5440 EF 1B ...

Extension Key Usage (2.5.29.15)
Critical YES
Usage Digital Signature, Key Encipherment

This says "we're using PKCS\#1 v1.5 padding"

Attacks

- Some implementations of this signature scheme did not check the entire padding. OOPS!
- Loops over the FF's but doesn't count them
- Some people were using e=3
- Lets turn this into a signature forgery attack!

```
00 01 FF 01 H(m) Attacker controlled
```

- Attacker cleverly chooses the right bytes such that the overall value is a power of 3 .
- Attack computes the cube root of message (notice doesn't need the signing key!) When verifier computes the cube, the message is restored with the "correct" padding

