
Information Security
SE 4472

Digital Signatures and RSA

Prof. Aleksander Essex

Digital Signatures
• A way to bind a message to a public key
• Two keys:

• A private signing key
• A public verification key

• Only the holder of the private signing key can generate valid
signatures on a given message for a given public key

• Anyone can check that a given signature and message is
consistent with a given public key

• Like public-key encryption, it should be hard to recover the
private signing key given only the public verification key

Signature Functionalities

KeygenSecurity
parameter

Private signing key
Public verification key

Sign

Private
signing key

Signature
Message

in {0,1}*

Verification

Public verification
key

Valid / InvalidMessage
in {0,1}*

Signature

Signature workflow

Sign

Signature

Message

Signature

Message

Alice’s
signing

key

Verify

Alice’s
verification

key

Valid!

Signature

Message

Eve modifies message

Sign

Signature

Message

Signature

Message

Alice’s
signing

key

Verify

Alice’s
verification

key

Invalid!

Signature

Message

Eve modifies signature

Sign

Signature

Message

Signature

Message

Alice’s
signing

key

Verify

Alice’s
verification

key

Signature

Message

Invalid!

Real signatures are done on hashes

Sign

Signature

Message

Signature

Message
Alice’s
signing

key
Verify

Alice’s
verification

key

Valid!

Hash
Hash

Signatures Forgeries
• If Eve captures Alice’s private signing key or can

recover the signing key from the verification key, she
can can create valid signatures on messages

• Forgeries are attacks creating valid signatures on a
message without necessarily knowing the private
signing key

Signatures Forgeries
• Universal Forgery

• Eve can create a valid signature on any arbitrary message, even
those provided by a challenger

• Selective Forgery
• Eve can create a valid signature on a message she chooses ahead

of time, but not necessarily on those provided by a challenger

• Existential Forgery
• Eve can demonstrate at least one forgery, but the message may not

be meaningful

Signatures with RSA

RSA
• First public-key encryption scheme invented by

Rivest, Shamir and Adelman
• One of the most important developments in

cryptography
• RSA for key agreement is not widely used these

days and will be deprecated in TLS 1.3
• Still widely used in digital signatures

RSA
• Recall Fermat’s Little Theorem:

For a prime p and an integer a it is the case that:

But what if we worked modulo a composite n, i.e.,
where n=p1p2…pk? Euler’s Theorem gives us:

ap�1 ⌘ 1 mod p

a(p1�1)(p2�1)...(pk�1) ⌘ 1 mod n

RSA
• Let n=pq for large primes p and q and let

Then as per Euler’s theorem:

Which means

Or in other words, exponents are computed in the
group of integers mod

a� ⌘ 1 mod n

a� ⌘ a� mod � ⌘ a0 mod n

�

� = (p� 1)(q � 1)

RSA
• Suppose we choose two numbers, e and d such

that:

Now we have the building blocks to create a public-
key encryption function

ed ⌘ 1 mod �

Textbook RSA
Public key: n, e
Private key: n, d
Encryption:

Decryption:

c = Enc(m) = me mod n

m = Dec(c) = cd mod n

Textbook RSA
Why decryption works:

m = Dec(c) = cd mod n

= (me)d mod n

= med mod � mod n

= m1 mod n

= m

Choices for e
• In the early days people chose encryption exponent

to be really small, ie e=3, but there were a number
of attacks

• We’d like to keep e small to keep the public-key
operation efficient, but big enough to prevent
attacks

• e=65537= 2^16+1 is a common choice
• d is then computed using the Euclidian algorithm as

d = e�1 mod �

RSA Signatures
• Here’s a first pass at turning RSA into a signature

scheme:
Private signing key: d,n
Public verification key: e,n
Sign:

Verify:

� = Sign(m) = md mod n

Verify(m0,�) :

�e mod n
?
= m0

Problem with Textbook RSA sigs

• Suppose you have two message/signature pairs:

Let:

Then:

is a valid signature (see proof on board).
• Conclusion: Existential forgeries are easy to do!

(m1,�1), (m2,�2)

m3 = m1m2 and �3 = �1�2

(m3,�3)

Solution: Use padding
• RSA PKCS#1 v1.5 padding:

m

Hash

H(m)00 01 FF FF FF …. FF 01

Padding

Signing

m

PKCS#1
1.5

Cast to
integer

RSA Sign Cast to
bytes signature

Verifying

m’

PKCS#1
1.5

Cast to
Bytes

RSA Verify Cast to
bytes signature

compare

Equivalent? (yes/no)

This says “we’re using
PKCS#1 v1.5 padding”

Attacks
• Some implementations of this signature scheme did not

check the entire padding. OOPS!
• Loops over the FF’s but doesn’t count them

• Some people were using e=3
• Lets turn this into a signature forgery attack!

• Attacker cleverly chooses the right bytes such that the
overall value is a power of 3.

• Attack computes the cube root of message (notice doesn’t
need the signing key!) When verifier computes the cube, the
message is restored with the “correct” padding

H(m)00 01 FF 01 Attacker controlled

