WEEK S
AUTHENTICATING DATA

SE 4472 - Information Security

Western | pJWHISPER
Engineering 1" LAB

I HOW IMPORTANT IS MESSAGE INTEGRITY, REALLY?

ALICE BOB

I HOW IMPORTANT IS MESSAGE INTEGRITY, REALLY?

“~ IT'SACTUALLY VERY IMPORTANT

IT’S SO IMPORTANT THAT WITHOUT INTEGRITY, YOU CANNOT
GUARANTEE CONFIDENTIALITY

I FFFECTS OF MESSAGE MODIFICATION

What happens if the attacker modifies the ciphertext in the one-time pad?

1111111100000000
sender side € 0010010101011100
1101101001011100

sent out “over the wire” ‘ attacker flips a bit

1101101001010100
N -{: @ 0010010101011100
receiver side

1111111100001000

I FFFECTS OF MESSAGE MODIFICATION

Block cipher in CTR-mode counter

|

Result: Flipping bit of ciphertext b4
flips bit of plaintext Mg ‘—69

|

flipped bit

I FFFECTS OF MESSAGE MODIFICATION

Block cipher in CBC-mode

Result: Flipping bit of ciphertext
totally corrupts current plaintext
block (avalanche effect)

BUT

Flips bit in nextblock!

totally
corrupted block

flipped bit

B |
—D

LD
U

-

lipped bit

FLIPPING BIT OF CIPHERTEXT FLIPS BIT
OF PLAINTEXT

A MAN-IN-THE-MIDDLE CAN MODIFY PLAINTEXT IN A LINEAR WAY
WITHOUT KNOWING THE KEY

I HOW IMPORTANT IS MESSAGE INTEGRITY, REALLY?

0K, SO WHAT?

THIS IS JUST AN ERROR-CORRECTION PROBLEM, RIGHT? WON'T
BOB JUST NOTICE IF THE PLAINTEXT COMES OUT FUNNY-LOOKING?

I ADAPTIVE CHOSEN CIPHERTEXT ATTACK

GUESSER CHALLENGER Plaintext | Ciphertext)
Coin toss picks 00 00511
to encrypt
. o Challenge messages: 00 and 11 _)32 01->00
aa V=10 CT = 0f 1059 10-pol
X 1110
01

Decrypt: V=10 CT=01

—_—D
»

Invalid request—challenge ciphertext!

% 10
Decrypt: V=10 CT=0100 10> >4
Challenger _)@ _)@
PT=0010
chose 00 -
| ALWAYS WINI! 01 00

0K, SO YOU CAN WIN THE CCA2 GAME IF
THERE’S NO INTEGRITY

BUT HOW LIKELY IS THIS TO HAPPEN IN PRACTICE? IT'S NOT LIKE BOB IS
GOING TO JUST START DECRYPTING THINGS FOR STRANGERS, RIGHT?

RIGHT??

Question: You want to encrypt a message that is not an even multiple of
the block length. What do you do?

Example: you have a 11-byte message and you want to encrypt with AES,
which has a 16-byte block.

Plaintextt H E L L O W O R L
UTF-8 ASCll bytes: 68 65 6¢C 6¢C 6f 20 77 6f 72 6C 64

16-byte AES

. 68 65 6¢c 6¢c 6T 20 77 6f 72 6C 64 77 7?27 77 77 77
plaintext block:

what do we put here??

 Use padding: a bunch of extra bytes to fill up the block

« PKCS #7is one way to do it: Pad with N bytes of OxN

 Always pad, therefore unambiguous: every plaintext gets padded,
even if plaintext is a multiple of the block length (add an entire block
of padding!)

Need 5 bytes of padding?
Il-byte plaintext block: 68 65 6¢c 6¢c 6f 20 77 6f 72 6¢c 64 7?7 727 77 77 77

 Padded 6o 65 6c 6c 6F 20 77 6F 72 6C 64 05 05 05 05 05
plaintext block:
Put 5 bytes of 0x05

<+ WHATHAPPENS IF THE PADDING IS
~ WRONG? WHAT SHOULD YOU D0?

* Alice and Bob use PKCS7 padding. Suppose Eve injects a random ciphertext. Bob
decrypts and gets:

5D 37 64 73 43 6A 85 31 40 BC 37 27 88 37 74 4E

 Uh oh! The padding’s wrong. What does Bob do? Return an error?

* Bob is going to have to somehow behave differently when the padding is incorrect.
May take different amounts of time to handle error vs. non error conditions

* Eve can sit back and observe if Bob changes his response based on her
modification and use this information to her advantage!

WHETHER HE MEANS TO OR NOT, BOB IS A PADDING ORACLE

5D 37 64 73
43 6A 85 31
40 BC 37 27
88 37 74 4E

F8 20 35 A4
03 CA 55 41
49 19 97 07
33 47 8D 50

— @

— @

Plaintext has
invalid
padding

Plaintext has
valid padding

PROBLEM:

PADDING ORACLES CAN BE TURNED INTO DECRYPTION
ORACLES

I A DECRYPTION ORACLE

Suppose: Eve modifies the last byte
of the first block of a ciphertext

If Bob acts like a padding oracle, Eve
can exploit his reactions to recover
the plaintext

corrupted block modified byte

I -)
—P

Dec Dec

-

modify byte

I A DECRYPTION ORACLE

1.

Let the last byte of ciphertext block c; block be called a

Let the last byte of the plaintext block m; be called b = a XOR d

Eve makes a guess g. Eve replaces a with:
a’ = g XOR 0x01

Bob now decrypts and gets:
b’ XO0R a’
XOR g XOR 0x01

There are two outcomes:

* Guess g was correct, i.e, g=d. Then g, d cancel out, and we have
b’'= 0x0@1.Thisis a valid padding no matter what the rest of m; is.
We know g=d and therefore b=a XOR g

* Guessgwasincorrect. Then b’ '= 0x01, which is invalid padding
(most of the time, depending on rest of plaintext)

corrupted block

I A DECRYPTION ORACLE

« Evereplays the ciphertext for each possible guess, i.e., submits a’
forall g = 0..255

 If only one guess succeeded, she has successfully decrypted the
last byte

« What if more than one guess succeeds, e.g., suppose:
b=..030303
Then guesses for the last byte:
g = 03 and g = 01 would both produce valid pads

« Evecan try to “decrypt” the second last byte to figure out which

case it was

Exercise:
How could Eve extend this attack to decrypt all the bytes of m,?

corrupted block

I PADDING ORACLE ATTACKS

 For each byte of ciphertext, Eve can recover the
associated plaintext typically in 255 queries

» AES: 16 byte block times 255 queries = ~4000
queries per block.

* Real PO implementations can decrypt plaintext
in a few seconds

 Attack can be used, e.g., to recover your
authentication tokens/cookies to hijack your
session

corrupted block

WHAT IF DECRYPTION ONLY WORKED IF THE
CIPHERTEXT WAS VALID?

AND WHAT IF IT WAS HARD TO DECIDE IF A
CIPHERTEXT WAS VALID UNLESS YOU HAD A
KEY?

MESSAGE
AUTHENTICATION
CODES

I MESSAGE AUTHENTICATION

ALICE BOB

\ 4

&
I I COMMUNICATION CHANNEL \
“Hey Bob, what's up?” n

N

EVE

I MESSAGE AUTHENTICATION

IND-EAV: Every '
plaintext maps IND-CPA: Every plaintext
to a unique maps to one of many
ciphertext possible plaintexts

. IND-CCA: Same as IND-
® Plaintexts CPA except most

. el
® Ciphertexts ciphertexts are invalid, and N
only a key holder can
decide \

> invalid ciphertexts

I MESSAGE AUTHENTICATION CODES (MAC)

¢ [SR

KEYGEN SIGN VERIFY
Accepts a security parameter k, outputs Accepts an arbitrary length message Accepts an arbitrary length message, a
a random k-bit key and k-bit key and outputs an [-bit MAC k-bit key, an [-bit MAC tag, and outputs
tag a single (Boolean] bit

Gen: k — {0,1}* Sign : {0,1}* x {0,1}* — {0,1}* Verify : {0,1}* x {0,1}* x {0,1}¢ — {0,1}

I HASH-BASED MESSAGE AUTHENTICATION CODES (HMAC)

key message

N\ |
S | g n key message
. A
_l—&
message Hash sum
. T A
S

v
tag

I MESSAGE AUTHENTICATION CODES (MAC)

Observe: Encryption and MAC signing keys
are different

The must be independently generated and
kept separate, otherwise attacks exist

ENCRYPT-THEN-MAC CONFIGURATION

I MESSAGE AUTHENTICATION CODES (MAC)

Observe: Encryption and MAC signing keys
are different

The must be independently generated and
kept separate, otherwise attacks exist

MAC-THEN-ENCRYPT CONFIGURATION

I MESSAGE AUTHENTICATION CODES (MAC)

I ADAPTIVE CHOSEN CIPHERTEXT ATTACK

GUESSER

| don't know a
valid tag

Challenge messages: 0@ and 11

CHALLENGER

V=10 CT=0111

A

Decrypt: V=10 CT-011100

INVALID ciphertext!

J: |

00 01
108 &
4 4
T v

01 11

E'’ Invalid

!

? %y
2 18 8
; ; o
01 11 00

Plaintext

Ciphertext)

> 11
> 00
»01

> 10

* Bob accepts or rejects a message based on its MAC, not
on the plaintext.

* Bob does not even look at the plaintext unless MAC is
valid

« MUCH harder for Eve to produce valid MAC (e.g., 1/2/%8)
than it is to produce valid padding byte (i.e., 1/256) in the
PO attack

AUTHENTICATED
ENCRYPTION

Keygen (security parameter):
returns encryption key k. and MAC key k.,

Encrypt (plaintext, k. k,.):
returns ciphertext c, MAC tag t, and |V

Decrypt(c, t IV, k. k..J:
returns plaintext if t is a valid tag for ciphertext c,
otherwise error if tis invalid

Protects developers by combining a cipher, cipher mode of
operation, MAC, MAC configuration, and exception handling
behind all behind one AP

Example AES-GCM:
 AES block cipher
e CTR mode

« (G-HASH MAC

* Encrypt-then-MAC configuration

AES GALOIS COUNTER MODE CAES-GCM)

Encryption
(AESin CTR
mode)

MAC
(Galois hash,

Encrypt-then-

MAC

mg

IV Va1
Enc =% Enc =%
__

iy

Co

) 4
Galois field
addition
) 4

. Galois field
multiplication

G GOOgIe x _

© @& https://www.google.com/?gws_rd=ss|

@ © Page Info - https://www.google.com/?gws_rd=ssl|
General Media Permissions

Website Identity

Website: www.google.com
Owner: This website does not supply ownership information.
Verified by: Google Trust Services View Certificate

Expires on: December 15

Privacy & History

Have | visited this website prior to today? No
Is this website storing information on my computer? Yes, cookies Clear Cookies and Site Data
Have | saved any passwords for this website? No View Saved Passwords

Technical Details
Connection Encrypted (TLS_AES_128 GCM_SHA256, 128 bit keys, TLS 1.3)
The page you are viewing was encrypted before being transmitted over the Internet.

Encryption makes it difficult for unauthorized people to view information travelling between computers. It is
therefore unlikely that anyone read this page as it travelled across the network.

