SE 4472 - Information Security

Western | aJ]W HISPER
%9 Engineering 1" W=

I SCENARIO

Is this
genuine?

9
\ I I < 10001010111110010000011010011010101

You download the latest Ubuntu release from a cloud server

How do you know it's not malware?

I SCENARIO

Are they
the same?

10001010111110010000011010011010101

You could a/so download the official file from

Ubuntu and compare them

But that's double the work, double the download, and defeats the
point of the cloud infrastructure

I SCENARIO

Are they
the same?

10001010111110010000011010011010101

$=100010101111100100
00011010011010101

=[100,101] . .
~ o You could check the first and last few bits
o But the malware could have been inserted in between

I SCENARIO

Are they
the same?

10001010111110010000011010011010101

9
Assert H1 ==
Checksum (100

010101111100
100000110100

11010101) You could have Ubuntu send you a short

error-detecting code

This is designed to detect random errors. It won't stop bad guys
from constructing false-negatives.

I DATA FINGERPRINTS?

What if there was a way to assign a short, unique and easy-to-
generate fingerprint to any string?

“Anyone who attempts to

generate random numbers by)
deterministic means is, of The enemy knows the

course, living in a state of sin.” system.

wind for revealing them to the [————— u]

trees.” -

“If you reveal your secrets to the] « :
: The trouble with quotes on
wind, you should not blame the .
the Internet is that you never
]
]]

http://identicon.net/

I SCENARIO

They're
the samel!

N

Assert ==

10001010111110010000011010011010101

Fingerprint(
100010101111

T You could have Ubuntu send you the fingerprint
The fingerprint is unique... or at least really really hard to find another string
that generates the same fingerprint

CRYPTOGRAPHIC HASHES ALL OVER

)

DATA FINGERPRINTING

Identifying malware, genuine code, git
intrusion detection, chain-of-custody

KEY-DERIVATION

Turn one secret key into a bunch of
keys

A

o 4

NON-INTERACTIVE ZKPs

A building block in non-interactive zero-
knowledge proofs (Fiat-Shamir heuristic)

24

DIGITAL SIGNATURES

Efficiency aid for public-key
cryptography

SECURE PASSWORD STORAGE

Store hashes instead of passwords to
mitigate breaches

°
°

POST-QUANTUM CRYPTO

Building block in several post-quantum
algorithms (key agreement, signatures

MESSAGE AUTHENTICATION CODES

Guaranteeing message integrity

PROOF OF WORK

Primary consensus mechanism of
Bitcoin and other cryptocurrencies

AR
SECURE PROTOCOLS

A building block of secure protocols e.g.

commitments, exact matching, time-stamping

BN WHAT IS A HASH FUNCTION?

h:{0,1}" — {0,1}°

A hash function maps arbitrary-length
strings to fixed-length (I-bit) strings

I TERMINOLOGY

domain

preimages

collision

T; € {0, 1}*

co-domain

images

BN WHAT IS A HASH FUNCTION?

Example: Let h(x) = x mod 256
h:{0,1}* — {0,1}®

Pre-image, x Image, h(x)
41685114102567 39
41685114102568 40
41685114102569 41
41685114102570 42

Problem: Related images (hashes) have related pre-images

I WHAT IS A CRYPTOGRAPHIC HASH FUNCTION?

h:{0,1}" — {0,1}°

A cryptographic hash function is a
pseudo-random hash function

I WHAT IS A CRYPTOGRAPHIC HASH FUNCTION?

Example: Let h(x]) = “random oracle”

8
h:{0,1}* = {0,1} ®
Pre-image, x Image, h(x)

41685114102567 143 @eeneeen@en Each 8-bit image
|| was chosen by an

41685114102568 35 (. independent 8-coin
! coin toss

41685114102569 69 @eeln i
L}

41685114102569 193 (@eeieeneiny

Related pre-images have maximally unrelated images

I RANDOM ORACLES DON'T ACTUALLY EXIST

* Impossible: If there are infinitely many possible inputs, a
@ random oracle requires infinite memory to maintain
image/preimage pairs

« Impractical: You could bound the input, but it's still
exponential memory in the hash bit length

« Fake it till you make it: In practice we only simulate random
oracles using (hopefully highly non-linear functions that
can't be easily inverted

I SECURITY PROPERTIES

 Pre-image resistance: Given a hash, it should be hard to find
a message that produces that hash

 Second preimage resistance: Given a message, it should be
hard to find another message that produces that hash

« Collision resistance: It should be hard to find any pair of
messages that collide (hash to the same value).

I PRE-IMAGE RESISTANCE

What is the probability of finding a
preimage if h(] is a random oracle?

e Throw a ball into a random bin
Plbin i not empty) = 1-P(bin i empty)

y@’ =0} 1) « Plbin i empty after 1 throw]) = 227;1

xz e {0,1}" 25_1)k
2¢

Given this 9l—1

* Plbin i not empty after 2" throws) = = = 5

* Plbiniempty after k throws) = (

Find this

Anideal ¢-bit hash function provides ¢-bits of
preimage resistance

I SECOND PRE-IMAGE RESISTANCE

Given this

Find this

Ny

21 € {0,1}

/

@2 € {0,1}"

W

/Z(Z~1)

y €{0,1}*

What is the probability of finding a
second preimage if h() is a random
oracle?

Similar analysis to pre-image resistance

Anideal #-bit hash function provides /-bits of second
preimage resistance

I COLLISION RESISTANCE

What is the probability of finding a collision if
h()is a random oracle?

Find any
pa'”ﬁﬂﬁ * Analysis based on the birthday paradox: how many people do
el you need in the room to expect some pair share a birthday?
I y € {01} Answer: only 23.
< * Intuition: if there are k days, and O(sqrt(k)) people in a room,
nc (01" W there are O(sqrt(k)"2)=0(k) pairs of people.

Each pair of birthdays differs by 0..(k-1)/2 days, so after
seeing O(k] pairs, you would expect to see a pair the differed
by O days.

Anideal £ -bit hash function provides ¢ ~bits of collision
resistance 2

I BITS OF SECURITY

If you require 128-bits of pre-image resistance,

which of these hash functions are acceptable?

If you require 128-bits of collision resistance,
which of these hash functions are acceptable?

Hash Output bit
algorithm length
MD5 128
SHA-1 160
SHA-256 256
SHA-512 512

I HASHING: TRY IT YOURSELF IN PYTHON

Hashing different messages with the same hash function:

>>> import hashlib

>>> hashlib.sha224(b"Hello1").hexdigest()
'cddd99351fcf09db06222975af5a8c6a5f01f373e37062eeced65db99"’
>>> hashlib.sha224(b"Hello2").hexdigest()
'4b35f88bf7e4396e6fb41fed2305592beedad5b4e782f7c0d998dbo "
>>> hashlib.sha224(b"Hello3").hexdigest()
'112255073618baeal9830d4f6f53fced3b9f281691728823d62d4642"

I HASHING: TRY IT YOURSELF IN PYTHONS

Hashing the same message with different hash functions:

>>> hashlib.md5(b"Hey").hexdigest()
'd0eedb799584d8501fdd802fd3c27ae34"

>>> hashlib.shal(b"Hey").hexdigest()
'e4599fa912653074005dad27f086837c20faeef4’

>>> hashlib.sha256(b"Hey").hexdigest()
'581d43745726e0ee62911178bfb3887c3fe295d29eeb741f0e40f91e8a70907a"
>>> hashlib.sha512(b"Hey").hexdigest()
'ec90c352aac8deb3e15d399f719ee3aala9e2dcb4d197cfb32c0314e216c5e861
613193791421150967ee0ef97cfcebael928612222800eealbc3tb45598736d’
>>> hashlib.blake2b(b"Hey").hexdigest()
'dfaad2d415391cfab4440d692d45aea4d81c083d19415d84e4d193aecd85f2bba
81f969ce012080de78b7329a6e5718c1846e17e8a96471f1e8e5741543426118"

>>> import hashlib
>>>

hashlib.md5(bytes. fromhex("

2
d ")).hexdigest()
'008ee33a9d58b51cfeb425b0959121c9’
”~ N\ >>>
1=; hashlib.md5(bytes. fromhex("
0
5 ")).hexdigest()

UF]Oh *'008ee33a9d58b51cfeb425b®959121c9'

MD5 IS NO LONGER COLLISION RESISTANT
COLLISIONS CAN BE FOUND FASTER THAN BRUTE-FORCE SEARCH!!

I FINAL POINTS ABOUT HASHING

Hashing is deterministic. Hash the same
message twice, get the same output

Don't get confused: Hashing is not
encryption! It doesn't have a decryption
function or a key

Every hash function has collisions (there are
more balls than bins)

Contact Prof. Essex:
aesSexX@uUwW0.ca

@aleksessex

See course website for slides and videos:
https.//whisperlab.org/security

CREDITS: This presentation template was created by Slidesgo,

including icons by Flaticon, and infographics & images by
Freepik and illustrations by Stories

Please keep this slide for attribution.

http://bit.ly/2Tynxth
http://bit.ly/2TyoMsr
http://bit.ly/2TtBDfr
https://stories.freepik.com/
mailto:aessex@uwo.ca
https://twitter.com/aleksessex
https://whisperlab.org/security

