

WEEK 2B FORMAL SECURITY NOTIONS

SE 4472 - Information Security

LEAKING INFORMATION

Reveals plaintext patterns (repeated letters) and frequency information

ENIGMA

Leaks information about what the plaintext isn't

VIGENÈRE

Still reveals patterns and frequency information due to passphrase repetition

THE PERFECT CIPHER?

CAN WE BUILD A CIPHER THAT LEAKED NO INFORMATION?

THE ONE-TIME PAD

VIGENÈRE, EXCEPT...

- Key is exactly the same length as the message
- Key is uniformly random.
 Every key in the keyspace is equally likely to be chosen)
- Key is **never** reused. EVER.

helloworld + xwbzuojsec eamkikxjpf

THE ONE-TIME PAD

I INFORMATION-THEORETIC SECURITY

GUESSING STRATEGY

CIPHERTEXT + KEY GUESS = PLAINTEXT GUESS

BUT ALL KEYS ARE EQUALLY LIKELY. SO WITHOUT ANY OTHER INFORMATION, ALL PLAINTEXTS ARE EQUALLY LIKELY. NO INFORMATION ABOUT PLAINTEXT IS REVEALED

INFORMATION-THEORETIC SECURITY

= UNBREAKABLE*

* All the computers and all the time in the universe won't help you guess the right key

INFORMATION-THEORETIC SECURITY

YOU ONLY HAVE TO...

- SOMEHOW securely transmit one byte of key for EVERY byte of plaintext you want to send
- SOMEHOW securely store one byte of key for EVERY byte of plaintext you want to receive
- SOMEHOW enforce you never ever reuse a single key byte EVER

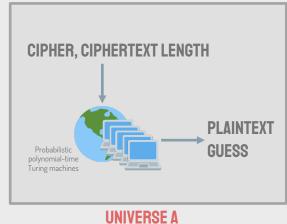
COMPUTATIONAL SECURITY

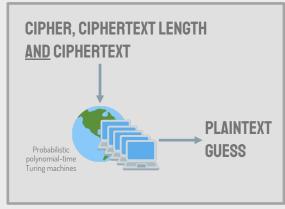
IN PRACTICE WE WANT SHORT, FIXED-LENGTH, REUSABLE KEYS

FORMALIZING COMPUTATIONAL SECURITY

What should it mean for a cipher to be secure?

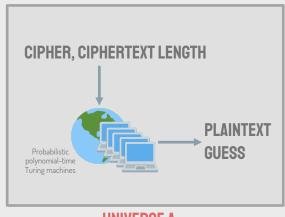
$$\pi f(x^2) \le \{y^2\} \sum_{\substack{\rho^n \times \alpha_k \ne q \\ [\mu_i \dots \mu_k]}} p^n \times \alpha_k \neq q$$

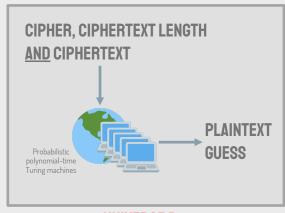



ONE-TIME PAD REVEALS <u>NO</u> INFORMATION ABOUT PLAINTEXT.

CAN WE CAPTURE A SIMILAR IDEA IN THE COMPUTATIONAL MODEL?

ISEMANTIC SECURITY

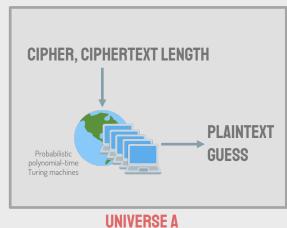


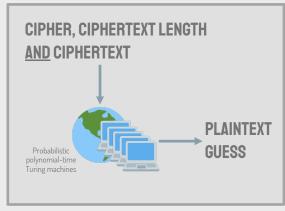

UNIVERSE B

SEMANTIC SECURITY

UNIVERSE B HAS AN ADVANTAGE OVER UNIVERSE A

...BUT IT'S SO SMALL, IT'S NEGLIGIBLE




UNIVERSE A

UNIVERSE B

ISEMANTIC SECURITY

IN OTHER WORDS, THE KNOWING CIPHERTEXT DOESN'T HELP THE ATTACKER

RSE A UNIVERSE B

ATTACK GAMES

HOW CAN WE PROVE A CIPHER IS (OR ISN'T) SEMANTICALLY SECURE?

ATTACK GAMESI

LET'S PLAY A GAME

1. I pick and send you two "challenge messages", M1, M2

- 2. You flip a coin: heads you pick M1, tails you pick M2. You encrypt it and send me the "challenge ciphertext"
- 3. I guess which message you picked. If I'm right, I win

ATTACK GAMES

WE'LL CALL THIS THE EVEASDROPPING (EAV) GAME

ATTACK GAMESI

IMPLICATIONS OF THE "EAV" GAME

If I guess randomly, I win 50% of the time

2. If I can *distinguish* ciphertexts, I can win more than 50% of the time

3. If I can't distinguish ciphertexts, I can't do better than random guessing

ATTACK GAMES

IMPLICATIONS OF THE "EAV" GAME

If I win less than 50% of the time, I can always just guess the <u>opposite</u>, and win *more* than 50% of the time

ADVANTAGE

$$Adv = \left| Pr(guessing correctly) - \frac{1}{2} \right|$$

ADVANTAGE IS HOW FAR OFF 50% MY SUCCESS RATE IS

ADVANTAGE

IS MY ADVANTAGE EVER ZERO IN THE "EAV" GAME?

No. I get the ciphertext, so I can try to brute-force decrypt it, and will succeed with some non-zero probability

ADVANTAGE

HOW SMALL IS "SO SMALL, IT'S OF NO PRACTICAL CONSEQUENCE?"

NEGLIGIBLE FUNCTION

 $\varepsilon(\lambda)$ is a negligible function in security parameter λ if for every polynomial function poly(), there is some $\lambda' > \lambda$ such that:

$$\varepsilon(\lambda) \le \left| \frac{1}{\mathsf{poly}(\lambda)} \right|$$

In other words, a negligible function shrinks faster than the inverse of any polynomial function

NEGLIGIBLE ADVANTAGE

WE HAVE A NEGLIGIBLE ADVANTAGE OF WINNING THE "EAV" GAME IF

$$\mathsf{Adv} \leq \varepsilon(\lambda)$$

IND-EAV SECURITY

A cipher is indistinguishable under eavesdropping (IND-EAV secure) if there exists no probabilistic polynomial-time Turing machine that can win the EAV game with a non-negligible advantage

Prove the Caesar, Vigenère and Enigma ciphers are <u>not IND-EAV</u> secure Which challenge messages would you pick? What strategy would you use to distinguish ciphertexts? What advantage would this strategy give you?

IND-EAV IS TOO STRONG

It's unrealistic in practice to assume eavesdropping is the best an attacker can do. Let's explore other attack games that grant the guesser more powers

IND-CPA SECURITY

The chosen-plaintext attack (CPA) game runs exactly the same as the eavesdropping game except the guesser gets an additional "power:" the ability to make <u>encryption queries</u> under the same key used to create the challenge ciphertext

IND-CCA1 SECURITY

The chosen-ciphertext attack (CCA1) game runs exactly the same as the CPA game except the guesser gets an additional "power:" the ability to make <u>decryption queries</u> under the same key as the challenge ciphertext, until the challenge ciphertext is received

IND-CCA2 SECURITY

The *adaptive* chosen-ciphertext attack (CCA2) game runs exactly the same as the CCA1 game except the guesser gets an additional "power:" the ability to make <u>decryption queries</u> after the challenge ciphertext is received*

^{*}Decryption queries involving the challenge ciphertext, or any string outside of the ciphertext space are ignored

QUESTIONS?

Contact Prof. Essex: aessex@uwo.ca @aleksessex

See course website for slides and videos: https://whisperlab.org/security

CREDITS: This presentation template was created by **Slidesgo**, including icons by **Flaticon**, and infographics & images by **Freepik** and illustrations by **Stories**

Please keep this slide for attribution.