
Information Security
SE 4472 / ECE 9064

Secure Password Generation
and

Storage

Secure Communication: What we
can do far
• Alice and Bob can establish a shared secret

• Confidentiality
• Key exchange (DHE, ECDHE)

• Alice and Bob can use the shared secret to encrypt
data
• Confidentiality
• Block ciphers, (AES, ChaCha20)

• Alice and Bob can check the data hasn’t been modified
• Integrity
• MACs (e.g., GCM, Poly1305, HMAC, etc)

Client Authentication
• A server authenticates itself to the client with public-

key infrastructure (PKI).
• A chain of certificates tie the server’s public

signature verification key to their identity.
• How does the client authenticate to the server?
• Does it make sense for Alice to have to buy,

manage and maintain a certificate in order to log in
to her Gmail account?

Some Authentication Methods
• Something you have

• Smartcard, token, cookie, etc

• Something you know
• Password, passphrase, etc

• Something you are
• Biometric

Passwords
• Pros

• Simple
• Inexpensive

• Cons
• Have to generate them securely
• Have to store them securely
• Have to remember them

Passwords and Human Memory
• Can remember quite a bit if your life depended on it

and you had nothing else to do
• Not very good in practice
• 56-bits after special training
• What kind of security levels do you need?

Threat Scenarios
There are two main ways hackers can bypass/recover
passwords:
• Online attacks

• Attacker tries logging in a bunch of times
• Mitigation: limit login attempts (simple!)

• Offline attacks
• Attacker can make password guesses offline (no limits)
• E.g. breached password database
• Mitigation: password hashing (less simple)

User-Chosen Passwords
• Humans are terrible at mental entropy generation
• Trade-off between being memorable and being

secure
• Common phrases (e.g., abcde, 12345)

Password Top 10
From the RockYou.com password database breach in
2009 (accounting for 2% of some 32 million passwords):
1. 123456
2. 12345
3. 123456789
4. password
5. iloveyou
6. princess
7. 1234567
8. rockyou
9. 12345678
10. abc123

System Assigned Passwords
• Better entropy, harder to remember
• Middle ground: user-chosen, system “approved”

• Password requirements (must have one digit, one special character,
etc)

• Password strength meters
• Does it really help? If I want my password to be 12345 but you force

me to use letters and special characters, maybe I’ll just choose :
o !234S, or
o The password I was going to choose anyway, plus “1” at the end

• People just write it down

Picking Passwords: Entropy
• How can you measure the strength of a password?
• Upper bound: assume password if chosen

independently and uniformly at random from a
known password space
• E.g., random 10 character lower-case alpha password: log2(2610) =

about 47 bits
• E.g., random 4 words from a 1000 word dictionary:

log2(1000^4)=40 bits
• Is a random 10 character/4 word password memorable?
• Is 47 bits cryptographically secure?
• You can see the dilemma…

Current Guidelines
• 12 characters minimum
• No more complexity requirements (e.g. at least one

upper case, lower case and special character)
• Longer and simpler passwords are better than shorter,

more complex ones
• Passphrase: “I like to eat pizza every Thursday for

dinner” -> iltepzevThfd
• 4-5 random words (correct battery horse staple)

https://www.canada.ca/en/government/system/digital-government/online-security-
privacy/password-guidance.html

https://www.canada.ca/en/government/system/digital-government/online-security-privacy/password-guidance.html

http://xkcd.com/936/

Password Databases
• Passwords have to be stored somewhere
• Have to be accessible to web-facing servers in

order to perform login verification
• What happens if server gets hacked?

Password Hashing
The idea: don’t store the password, store the hash
• Setup: User u choses pwd p and sends to server.

Server computes hp=Hash(p) and stores (u,hp) in
the password database

• Verification: Someone claiming to be user u
submits (u,p’) to server. Sever looks up (u,hp) and
checks if Hash(p’)=hp. If so, login is accepted.

Salting
Problem: If you just hash the password, then the same password
will always map to the same hash. Then if Eve crack’s one user’s
password, she will have cracked everyone else who uses the same
password.
Attacker can just store all the passwords in a dictionary or rainbow
table.

Idea: use a random “salt” s (similar to an initialization vector):
Password hash becomes hp=Hash(p||s). Store (u,hp,s)
This way if two passwords equal, e.g., “12345,” if they have different
salts, they will have different hashes, and the dictionary is useless

Key Stretching
Problem: hashing is fast (think billions of hashes per
second on a single GPU). Even with salted hashing,
you can still tear through the most common password
choices very quickly.

Idea: make hashing the password slow. Client and
server can tolerate taking e.g., 1s to check a
password, but hurts attacker if they have to make
millions and billions of guess each taking 1s.

PBKDF2
Password-based Key Derivation Function: Iterative hashing with user
chosen number of iterations:

hp = PBKDF2(Hash(), p, s, iter, klen)

Execution:
hp0 = Hash(p || s)
hp1 = Hash(hp0)
…
hpiter = Hash(hpiter-1)
Output hp=hpiter

