
Information Security
SE 4472

Putting it all together:
Transport Layer Security (TLS)



Security at the Transport Layer

Where we started in this course: no security



Security at the Transport Layer

Where we’ve ended up in this course: practical security



Security at the Transport Layer
• TLS is the protocol that secures the web
• Combines all the concepts you’ve learned about so 

far
• HTTPS: HTTP-over-TLS

• Eavesdropper can see you exchanging bits with a server
• Eavesdropper cannot see Session and Presentation and Application-

layer information:
o Cannot see URL (e.g.,uwo.ca/welcome.html)
o Cannot see cookies/auth tokens
o Cannot see page contents



SSL/TLS History
• Secure Sockets Layer (SSL)

• 1.0 – not released. Originally written by Taher Elgamal.
• 2.0 – 1995. MITM possible through cipher downgrade attacks. 

Disallowed by IETF in 2011 (RFC 6176)
• 3.0 – 1996. Major redesign. SHA-1 introduced. POODLE attack (Sept 

2014)

• Transport Layer Security (TLS)
• 1.0 – 1999. Different key derivation functions (HMAC)
• 1.1 – 2006. Better IV handling mitigates CBC-mode attacks (BEAST)
• 1.2 – 2008. SHA-256. AES-GCM
• 1.3 – 2018. Deprecate RSA Kx. Requires forward-secrecy, 

authenticated encryption. Eliminates MD5, 3DES, SHA-1, CBC mode



TLS Handshake



TLS Handshake
Phases:
• Phase 1: Agree on security capabilities/parameters
• Phase 2: Public key exchange and public-key 

authentication (via certificates/PKI)
• Phase 3: Shared-secret and sub-key derivation
• Phase 4: Symmetric-key handshake authenication



server_key_exchange

Figure 17.6  Handshake Protocol Action

Client Server

Ti
m

e

client_hello

certificate
client_key_exchange

certificate_verify

change_cipher_spec
finished

server_hello

certificate

certificate_request

server_hello_done

change_cipher_spec

finished

Phase 1
Establish security capabilities, including
protocol version, session ID, cipher suite,
compression method, and initial random
numbers.

Phase 2
Server may send certificate, key exchange,
and request certificate. Server signals end
of hello message phase.

Phase 3
Client sends certificate if requested. Client
sends key exchange. Client may send
certificate verification.

Phase 4
Change cipher suite and finish
handshake protocol.

Note: Shaded transfers are
optional or situation-dependent
messages that are not always sent.

Source: William Stallings. Cryptography and Network Security.



Phase 1: Security Capabilities
• Client_Hello

• Highest SSL/TLS version supported
• Client nonce
• Session ID

• Server_Hello
• Highest SSL/TLS version supported
• Appropriate ciphersuite

o Kx (e.g., DHE/ECDHE)
o Cipher algorithm (e.g., AES-GCM)
o Hash function (e.g., SHA256)

• Server nonce



TLS Ciphersuites
Example: TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256

• Key agreement
• RSA, DHE, ECDHE

• Signature scheme
• RSA, DSA, ECDSA

• Block cipher and mode of operation
• AES_256_CBC, 3DES_EDE, AES-GCM (i.e., AES in CTR), 

CHACHA20_POLY1305

• Hash function
• SHA1, SHA256, SHA512



Firefox’s Ciphersuite Preferences



TLS Ciphersuites
• The hash function is used as a pseudo-random 

function to derive sub-keys and as a MAC to 
authenticate certain messages

• What about this:
• TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256
• What is the key agreement method? What is the signature scheme? 

What is the Cipher?
• What is the MAC?



Phase 2: Authentication and 
Public-key Exchange
• Certificate message

• Server sends certificate chain

• Server_key_exchange
• If using DHE/ECDHE, server sends its public key and signature

Client checks certificate chain, and signature on Pk if 
using DHE/ECDHE



Phase 3: Key Exchange/Derivation

1. Exchange pre-master secret
• If using RSA for Kx

• Client generates 48-byte pre-master secret, encrypts with public key 
and sends to server

• If using DHE/ECDHE
• Parties compute Diffie-Hellman shared secret (becomes pre-master 

secret)

2. Derive master secret
3. Derive symmetric keys

• Use key derivation function to derive key material (see next slide)



Pseudo-random Function (PRF)
• TLS makes use of an HMAC as a PRF
• Used to expand secrets into keys
• Recall HMAC(K,m) accepts a message and a key
• First we define P_hash, which takes a secret (and a seed value) and 

expands it into a desired number of bytes:

P_hash(secret, seed) = HMAC_hash(secret, A(1) + seed) +
HMAC_hash(secret, A(2) + seed) +
HMAC_hash(secret, A(3) + seed) + ...

where + indicates concatenation.

A() is defined as:

A(0) = seed
A(i) = HMAC_hash(secret, A(i-1))



Pseudo-random Function (PRF)
• The PRF is constructed as follows:

PRF(secret, label, seed) = P_<hash>(secret, label + seed)

• The label is a UTF-8 string. For example, the label "slithy
toves" would be represent the following bytes:

73 6C 69 74 68 79 20 74 6F 76 65 73



Master Secret
• Derived from the pre-master secret (either RSA or 

Diffie-Hellman shared secret):

• Used to generate the “key block”:

master_secret = PRF(pre_master_secret, "master secret",
ClientHello.random + ServerHello.random)
[0..47];

key_block = PRF(SecurityParameters.master_secret,
"key expansion",
SecurityParameters.server_random +
SecurityParameters.client_random);



Key Block
• The key block consists of all the values used in the 

symmetric-key operations
• TLS generates separate keys for client and sever 

(though both ends have all keys):

client_write_MAC_key[SecurityParameters.mac_key_length]
server_write_MAC_key[SecurityParameters.mac_key_length]
client_write_key[SecurityParameters.enc_key_length]
server_write_key[SecurityParameters.enc_key_length]



Phase 4: Finished
• Parties exchange Finished messages
• An HMAC’d copy of everything the client (resp. the 

server) has seen in the handshake so far

• Prevents a variety of subtle man-in-the-middle attacks
• Once client (resp. server) sends its Finished message 

and receives and validates the Finished message from 
its peer, it can start using the TLS connection.

PRF(master_secret, finished_label, 
Hash(handshake_messages))



Wireshark
Let’s see a TLS handshake in Wireshark
Between:
• Laptop using Firefox (10.0.1.18) 
• Amazon.ca (52.94.225.242)



Hello random

Firefox-supported ciphersuites



Amazon.ca certificate



Stapled OCSP status
(response from CA’s OCSP server)



Server’s ECDH public key

Signature on public key



Client’s ECDH public key



Encrypted “Client-finished” 
message



Encrypted “Server-finished” 
message


